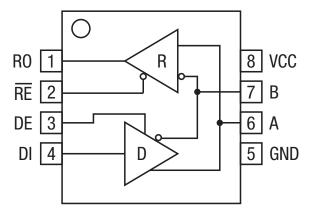


SP481E / SP485E

Enhanced Low Power Half-Duplex RS-485 Transceivers

Description


The SP481E and SP485E are a family of half-duplex transceivers that meet the specifications of RS-485 and RS-422 serial protocols with enhanced ESD performance. The ESD tolerance has been improved on these devices to over ±15kV for both Human Body Model and IEC61000-4-2 Air Discharge Method. These devices are pin-to-pin compatible with MaxLinear's SP481 and SP485 devices as well as popular industry standards. As with the original versions, the SP481E and SP485E feature Maxlinear's BiCMOS design allowing low power operation without sacrificing performance. The SP481E and SP485E meet the requirements of the RS-485 and RS-422 protocols up to 10Mbps under load. The SP481E is equipped with a low power shutdown mode.

FEATURES

- 5V only
- Low power BiCMOS
- Driver / receiver enable for multi-drop configurations
- Low power shutdown mode (SP481E)
- Enhanced ESD specifications:
- □ ±15kV Human Body Model
- □ ±15kV IEC61000-4-2 Air Discharge
- □ ±8kV IEC61000-4-2 Contact Discharge
- Available in RoHS compliant, lead free packaging.

Ordering Information - Back Page

Block Diagram

SP481E and SP485E

REV 1.0.5 1/9

Absolute Maximum Ratings

These are stress ratings only and functional operation of the device at these ratings or any other above those indicated in the operation sections of the specifications below is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.

V _{CC}	7.0V		
Input Voltages			
	Logic0.3V to (V_{CC} + 0.5V)		
	Drivers0.3V to (V _{CC} + 0.5V) Receivers±15V		
Output Voltages	3		
	Logic0.3V to (V_{CC} + 0.5V)		
	Drivers±15V		
	Receivers0.3V to $(V_{CC} + 0.5V)$		
Storage Temperature65°C to +150			
Power Dissipati	on		
8-pin NSOIC	550mW		
	(derate 6.60mW/°C above +70°C)		

ESD Ratings

HBM - Human Body Model (A and B pins)±15kV
HBM - Human Body Model (All other pins)±3kV
IEC61000-4-2 Air Discharge (A and B pins)±15kV
IEC61000-4-2 Contact Discharge (A and B pins)±8kV

Electrical Characteristics

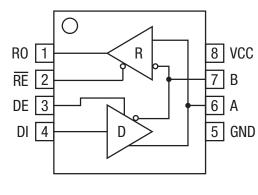
 $T_{AMB} = T_{MIN}$ to T_{MAX} and $V_{CC} = 5V \pm 5\%$ unless otherwise noted.

PARAMETERS	MIN.	TYP.	MAX.	UNITS	CONDITIONS			
SP481E / SP485E Driver DC Characteristics								
Differential output voltage			V _{CC}	V	Unloaded; R = ∞Ω ; Figure 1			
Differential output voltage	2		V _{CC}	V	With load; R = 50Ω (RS-422); Figure 1			
Differential output voltage	1.5		V _{CC}	V	With load; R = 27Ω (RS-485); Figure 1			
Change in magnitude of driver differential output voltage for complimentary states			0.2	V	R = 27Ω or R = 50Ω ; Figure 1			
Driver common-mode output voltage			3	V	R = 27Ω or R = 50Ω; Figure 1			
Input high voltage	2.0			V	Applies to DE, DI, RE			
Input low voltage			0.8	V	Applies to DE, DI, RE			
Input current			±10	μA	Applies to DE, DI, RE			
Driver short circuit current V _{OUT} = HIGH			±250	mA	-7V ≤ V _O ≤ 12V			
Driver short circuit current V _{OUT} = LOW			±250	mA	-7V ≤ V _O ≤ 12V			

Electrical Characteristics (Continued)

 $T_{AMB} = T_{MIN}$ to $T_{MAX}~$ and $V_{CC} = 5V~\pm 5\%$ unless otherwise noted.

	PARAMETERS	MIN.	TYP.	MAX.	UNITS	CONDITIONS
Maximum data rate 10	SP481E / SP485E Driver AC Charac	teristics				
See Figures 3 & 5, R _{DIFF} = 54Ω, CL = 100pF, See Figures 3 & 5, R _{DIFF} = 54Ω, CL = 100pF, See Figures 3 & 5, R _{DIFF} = 54Ω, CL = 100pF, See Figures 3 & 5, R _{DIFF} = 54Ω, CL = 100pF, See Figures 3 & 5, R _{DIFF} = 54Ω, CL = 100pF, See Figures 3 & 5, R _{DIFF} = 54Ω, CL = 100pF, See Figures 3 & 5, R _{DIFF} = 54Ω, CL = 100pF, See Figures 3 & 5, R _{DIFF} = 54Ω, CL = 100pF, See Figures 3 & 5, R _{DIFF} = 54Ω, CL = 100pF, See Figures 3 & 5, R _{DIFF} = 54Ω, CL = 100pF, See Figures 3 & 5, R _{DIFF} = 54Ω, CL = 100pF, See Figures 3 & 5, R _{DIFF} = 54Ω, CL = 100pF, See Figures 3 & 5, R _{DIFF} = 54Ω, CL = 100pF, See Figures 4 & See Figures 5 & See Figures 4 & See Figures 5 & See Figures 4 & See Figures 5 & See F	Maximum data rate	10			Mbps	
SP485EM ONLY) 30 80 ns C _{L1} = C̄ _{L2} = 100pF	Driver input to output, t _{PLH}		30	60	ns	See Figures 3 & 5 Pages = 540
See Figures 3 & 5, Rojer = 54Ω, CL = CL2 = 100pF, See Figures 3 and 5, t _{SKEW} = [t _{DPLL} - t _{DPLL} See Figures 3 and 5, t _{SKEW} = [t _{DPLL} - t _{DPLL} See Figures 3 and 5, t _{SKEW} = [t _{DPLL} - t _{DPLL} See Figures 3 and 5, t _{SKEW} = [t _{DPLL} - t _{DPLL} - t _{DPLL} See Figures 3 and 6, t _{DPLL} - t _{DPLL} - t _{DPLL} See Figures 3 and 6, t _{DPLL} - t _{DP}	Driver input to output, t _{PLH} (SP485EMN ONLY)		30	80	ns	
SP48EM SP48EM SP48E SP48EM	Driver input to output, t _{PHL}		30	60	ns	Soo Figures 3 & 5 Page = 540
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Driver input to output, t _{PHL} (SP485EMN ONLY)		30	80	ns	5 5
Survey	Driver skew		5	10	ns	See Figures 3 and 5, t _{SKEW} = t _{DPHL} - t _{DPLH}
Driver enable to output low 40 70 10 10 10 10 10 10 10 1	Driver rise or fall time		15	40	ns	
Driver disable time from high 40 70 10 10 10 10 10 10 10 1	Driver enable to output high		40	70	ns	C _L = 100pF, See Figures 4 and 6, S ₂ closed
Driver disable time from low 40 70 ns C_L = 100pF, See Figures 4 and 6, S_1 closed SP481E / SP485E Receiver DC Characteristics Differential input threshold -0.2 0.2 Volts -7V ≤ V _{CM} ≤ 12V Differential input threshold (SP485EMN ONLY) -0.4 0.4 Volts -7V ≤ V _{CM} ≤ 12V Input hysteresis 20 mV V _{CM} = 0V Output voltage high 3.5 Volts V _{ID} = 200mV, I _D = -4mA Output voltage low 0.4 Volts V _{ID} = 200mV, I _D = 4mA Three-state (high impedance) output current ±1 µA 0.4V ≤ V _O ≤ 2.4V; RE = 5V Input resistance 12 15 kΩ -7V ≤ V _{CM} ≤ 12V Input current (A, B); V _{IN} = 12V 1.0 mA DE = 0V, V _{CC} = 0V or 5.25V, V _{IN} = 12V Input current (A, B); V _{IN} = -7V -0.8 mA DE = 0V, V _{CC} = 0V or 5.25V, V _{IN} = -7V Short circuit current 7 95 mA 0 ≤ V _O ≤ V _{CC} SP481E / SP485E Receiver AC Characteristics Maximum data rate 10 mS Path (SP485E Path (SP485E Path (SP485E Path (SP485E Path (SP485E Path (SP485E Path (SP48	Driver enable to output low		40	70	ns	C _L = 100pF, See Figures 4 and 6, S ₁ closed
SP481E / SP485E Receiver DC Characteristics Differential input threshold -0.2 0.2 Volts -7V ≤ V _{CM} ≤ 12V Differential input threshold (SP485EMN ONLY) -0.4 0.4 Volts -7V ≤ V _{CM} ≤ 12V Input hysteresis 20 mV V _{CM} = 0V Output voltage high 3.5 Volts V _{ID} = 200mV, I _O = -4mA Output voltage low 0.4 Volts V _{ID} = 200mV, I _O = 4mA Three-state (high impedance) output current ±1 µA 0.4V ≤ V _O ≤ 2.4V; RE = 5V Input resistance 12 15 kΩ -7V ≤ V _{CM} ≤ 12V Input current (A, B); V _{IN} = 12V 1.0 mA DE = 0V, V _{CC} = 0V or 5.25V, V _{IN} = 12V Input current (A, B); V _{IN} = -7V -0.8 mA DE = 0V, V _{CC} = 0V or 5.25V, V _{IN} = -7V Short circuit current 7 95 mA 0V ≤ V _{CC} SP481E / SP485E Receiver AC Characteristics Maximum data rate 10 Mbps RE = 0V, DE = 0V Receiver input to output to output 20 45 100 ns t _{PHL} ; See Figures 3 & 7, R _{DIFF} = 54Ω, C _{L1} =	Driver disable time from high		40	70	ns	C _L = 100pF, See Figures 4 and 6, S ₂ closed
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Driver disable time from low		40	70	ns	C _L = 100pF, See Figures 4 and 6, S ₁ closed
Differential input threshold (SP485EMN ONLY) □ 0.4 □	SP481E / SP485E Receiver DC Char	racteristics				
SP485EMN ONLY Constraint	Differential input threshold	-0.2		0.2	Volts	-7V ≤ V _{CM} ≤ 12V
Output voltage high 3.5 Volts $V_{ID} = 200mV$, $I_O = 4mA$ Output voltage low 0.4 Volts $V_{ID} = 200mV$, $I_O = 4mA$ Three-state (high impedance) output current ±1 μA 0.4V ≤ $V_O \le 2.4V$; $\overline{RE} = 5V$ Input resistance 12 15 $K\Omega$ $-7V \le V_{CM} \le 12V$ Input current (A, B); $V_{IN} = 12V$ 1.0 mA DE = 0V, $V_{CC} = 0V$ or 5.25V, $V_{IN} = 12V$ Input current (A, B); $V_{IN} = -7V$ -0.8 mA DE = 0V, $V_{CC} = 0V$ or 5.25V, $V_{IN} = -7V$ Short circuit current 7 95 mA $0V \le V_O \le V_{CC}$ SP481E / SP485E Receiver AC Characteristics Waximum data rate 10 Mbps $\overline{RE} = 0V$, $DE = 0V$ Receiver input to output 20 45 100 ns $\overline{t_{PHL}}$; See Figures 3 & 7, RDIFF = 54Ω, CL1 = CL2 = 100pF Receiver input to output 20 45 100 ns $\overline{t_{PHL}}$; See Figures 3 & 7, RDIFF = 54Ω, CL1 = CL2 = 100pF Pull in the control output to output 20 45 100 ns $\overline{t_{PHL}}$; See Figures 3 & 8, RDIFF = 54Ω, CL1 = CL2 = 100pF Receiver en	Differential input threshold (SP485EMN ONLY)	-0.4		0.4	Volts	-7V ≤ V _{CM} ≤ 12V
Dutput voltage low	Input hysteresis		20		mV	V _{CM} = 0V
Three-state (high impedance) butput current ± 1 \pm	Output voltage high	3.5			Volts	V _{ID} = 200mV, I _O = -4mA
putput current by the put put put current by the put	Output voltage low			0.4	Volts	V _{ID} = 200mV, I _O = 4mA
Input current (A, B); $V_{\text{IN}} = 12V$	Three-state (high impedance) output current			±1	μА	0.4V ≤ V _O ≤ 2.4V; RE = 5V
Input current (A, B); $V_{IN} = -7V$ Short circuit current 7 95 mA $DE = 0V, V_{CC} = 0V \text{ or } 5.25V, V_{IN} = -7V$ Short circuit current 7 95 mA $0V \le V_O \le V_{CC}$ SP481E / SP485E Receiver AC Characteristics Maximum data rate 10 Mbps RE = 0V, DE = 0V $V_{CL} = 0V = 0V$ $V_{CL} = 0V$	Input resistance	12	15		kΩ	-7V ≤ V _{CM} ≤ 12V
Short circuit current 7 95 mA $0V \le V_O \le V_{CC}$ SP481E / SP485E Receiver AC Characteristics Maximum data rate 10 Mbps RE = 0V, DE = 0V Receiver input to output 20 45 100 ns t_{PLH} ; See Figures 3 & 7, t_{PLH} ; See Figures 3 & 8, 7, t_{PLH} ; See Figures 3 & 7, $t_{$	Input current (A, B); V _{IN} = 12V			1.0	mA	DE = 0V, V _{CC} = 0V or 5.25V, V _{IN} = 12V
SP481E / SP485E Receiver AC Characteristics Maximum data rate 10 Mbps RE = 0V, DE = 0V Receiver input to output 20 45 100 ns tplh; See Figures 3 & 7, Rolf; = 54Ω, Cl1 = Cl2 = 100pF Receiver input to output 20 45 100 ns tphl; See Figures 3 & 7, Rolf; = 54Ω, Cl1 = Cl2 = 100pF Differential receiver skew tphl; - tplh 13 ns Rolf; = 54Ω, Cl1 = Cl2 = 100pF, See Figures 3 and 7 Receiver enable to output low 45 70 ns CRL = 15pF, Figures 2 & 8; S1 Closed Receiver enable to output high 45 70 ns CRL = 15pF, Figures 2 & 8; S2 Closed Receiver Disable from low 45 70 ns CRL = 15pF, Figures 2 & 8; S1 Closed	Input current (A, B); V _{IN} = -7V			-0.8	mA	DE = 0V, V _{CC} = 0V or 5.25V, V _{IN} = -7V
Maximum data rate 10 Mbps $\overline{RE} = 0V$, $DE = 0V$ Receiver input to output 20 45 100 ns t_{PLH} ; See Figures 3 & 7, $t_{PDIFF} = 54\Omega$, t_{PD	Short circuit current	7		95	mA	$0V \le V_O \le V_{CC}$
Receiver input to output 20 45 100 ns $t_{PLH}; See Figures 3 \& 7, R_{DIFF} = 54\Omega, C_{L1} = C_{L2} = 100pF$ Receiver input to output 20 45 100 ns $t_{PHL}; See Figures 3 \& 7, R_{DIFF} = 54\Omega, C_{L1} = C_{L2} = 100pF$ Differential receiver skew $t_{PHL} - t_{PLH} = t_{PLH}$ Receiver enable to output low 45 70 ns $C_{RL} = 15pF, Figures 2 \& 8; S_1 Closed$ Receiver Disable from low 45 70 ns $C_{RL} = 15pF, Figures 2 \& 8; S_1 Closed$ Receiver Disable from low	SP481E / SP485E Receiver AC Char	acteristics	,		'	
Receiver input to output 20 45 100 10 10 10 10 10 10 1	Maximum data rate	10			Mbps	RE = 0V, DE = 0V
Receiver input to output 20 45 100 $11S$ $R_{DIFF} = 54\Omega$, $C_{L1} = C_{L2} = 100pF$ Differential receiver skew 13 13 13 13 13 13 13 13	Receiver input to output	20	45	100	ns	
t_{PHL} - t_{PLH} 13NSSee Figures 3 and 7Receiver enable to output low4570ns C_{RL} = 15pF, Figures 2 & 8; S1 ClosedReceiver enable to output high4570ns C_{RL} = 15pF, Figures 2 & 8; S2 ClosedReceiver Disable from low4570ns C_{RL} = 15pF, Figures 2 & 8; S1 Closed	Receiver input to output	20	45	100	ns	
Receiver enable to output high 45 70 ns C _{RL} = 15pF, Figures 2 & 8; S ₂ Closed Receiver Disable from low 45 70 ns C _{RL} = 15pF, Figures 2 & 8; S ₁ Closed	Differential receiver skew t _{PHL} - t _{PLH}		13		ns	
Receiver Disable from low 45 70 ns C _{RL} = 15pF, Figures 2 & 8; S ₁ Closed	Receiver enable to output low		45	70	ns	C _{RL} = 15pF, Figures 2 & 8; S ₁ Closed
	Receiver enable to output high		45	70	ns	C _{RL} = 15pF, Figures 2 & 8; S ₂ Closed
Receiver Disable from high 45 70 ns C _{RI} = 15pF, Figures 2 & 8; S ₂ Closed	Receiver Disable from low		45	70	ns	C _{RL} = 15pF, Figures 2 & 8; S ₁ Closed
	Receiver Disable from high		45	70	ns	


3/9

Electrical Characteristics, Continued

 $T_{AMB} = T_{MIN}$ to $T_{MAX}\,$ and $V_{CC} = 5V\,\pm\!5\%$ unless otherwise noted

PARAMETERS	MIN.	TYP.	MAX.	UNITS	CONDITIONS
SP481E Shutdown Timing					
Time to shutdown	50	200	600	ns	RE = 5V, DE = 0V
Driver enable from shutdown to output high		40	100	ns	C _L = 100pF; See Figures 4 and 6; S ₂ Closed
Driver enable from shutdown to output low		40	100	ns	C _L = 100pF; See Figures 4 and 6; S ₁ Closed
Receiver enable from shutdown to output high		300	1000	ns	C _L = 15pF; See Figures 2 and 8; S ₂ Closed
Receiver enable from shutdown to output low		300	1000	ns	C _L = 15pF; See Figures 2 and 8; S ₁ Closed
Power Requirements					
Supply voltage V _{CC}	4.75		5.25	Volts	
Supply current					
No load		900		μA	\overline{RE} , DI = 0V or V_{CC} ; DE = V_{CC}
No load		600		μA	RE = 0V, DI = 0V or 5V; DE = 0V
Shutdown mode (SP481E)			10	μA	DE = 0V, RE = V _{CC}
Environmental and Mechanical					
Operating Temperture					
Commercial (_C_)	0		70	°C	
Industrial (_E_)	-40		85	°C	
(_M_)	-40		125	°C	
Storage Temperature	-65		150	°C	
Package					
NSOIC (_N)	<u> </u>	<u> </u>	<u> </u>	<u> </u>	

Pin Functions

SP481E and SP485E Pinout (Top View)

Pin Number	Pin Name	Description
1	RO	Receiver output
2	RE	Receiver output enable active LOW
3	DE	Driver output enable active HIGH
4	DI	Driver input
5	GND	Ground connection
6	А	Non-inverting driver output / receiver input
7	В	Inverting driver output / receiver input
8	VCC	Positive supply 4.75V ≤ Vcc ≤ 5.25V

Test Circuits

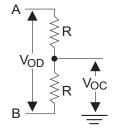


Figure 1: RS-485 Driver DC Test Load Circuit

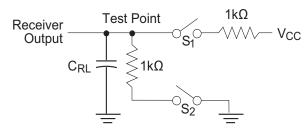


Figure 2: Receiver Timing Test Load Circuit

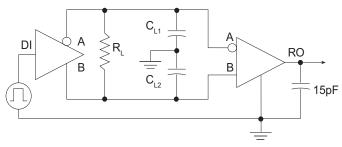


Figure 3: RS-485 Driver/Receiver Timing Test Circuit

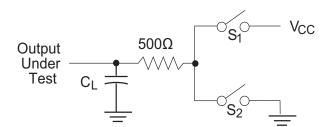
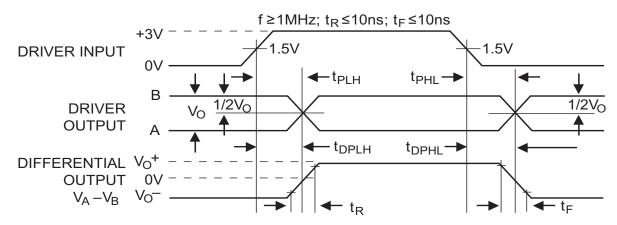



Figure 4: Driver Timing Test Load #2 Circuit

Switching Waveforms

t_{SKEW} = |t_{DPLH}-t_{DPHL}|

Figure 5: Driver Propagation Delays

Switching Waveforms (Continued)

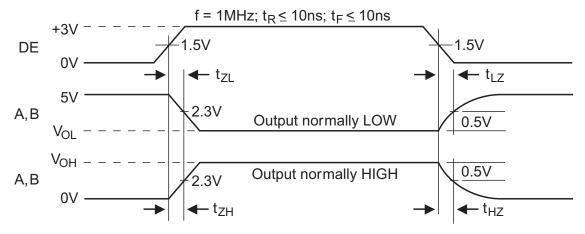


Figure 6: Driver Enable and Disable Times

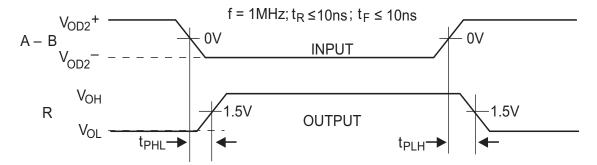


Figure 7: Receiver Propagation Delays

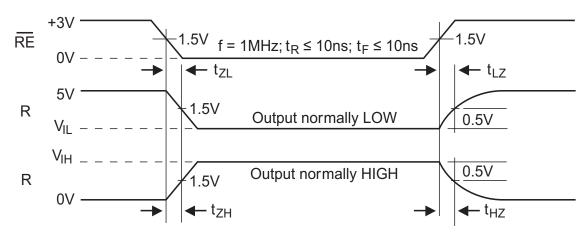


Figure 8: Receiver Enable and Disable Times

Description

The SP481E and SP485E are half-duplex differential transceivers that meet the requirements of RS-485 and RS-422. Fabricated with an Maxlinear proprietary BiCMOS process, this product requires a fraction of the power of older bipolar designs.

The RS-485 standard is ideal for multi-drop applications and for long-distance interfaces. RS-485 allows up to 32 drivers and 32 receivers to be connected to a data bus, making it an ideal choice for multi-drop applications. Since the cabling can be as long as 4,000 feet, RS-485 transceivers are equipped with a wide (-7V to 12V) common mode range to accommodate ground potential differences. Because RS-485 is a differential interface, data is virtually immune to noise in the transmission line.

Drivers

The driver outputs of the SP481E and SP485E are differential outputs meeting the RS-485 and RS-422 standards. The typical voltage output swing with no load will be 0 Volts to 5 Volts. With worst case loading of 54Ω across the differential outputs, the drivers can maintain greater than 1.5V voltage levels. The drivers of the SP481E and SP485E have an enable control line which is active HIGH. A logic HIGH on DE (pin 3) will enable the differential driver outputs. A logic LOW on the DE (pin 3) will tri-state the driver outputs.

The transmitters of the SP481E and SP485E will operate up to at least 10Mbps.

Receivers

The SP481E and SP485E receivers have differential inputs with an input sensitivity as low as ± 200 mV. Input impedance of the receivers is typically $15k\Omega$ ($12k\Omega$ minimum). A wide common mode range of -7V to +12V allows for large ground potential differences between systems. The receivers of the SP481E and SP485E have a tri-state enable control pin. A logic LOW on \overline{RE} (pin 2) will enable the receiver, a logic HIGH on \overline{RE} (pin 2) will disable the receiver.

The receiver for the SP481E and SP485E will operate up to at least 10Mbps. The receiver for each of the two devices is equipped with the fail-safe feature. Fail-safe guarantees that the receiver output will be in a HIGH state when the input is left unconnected.

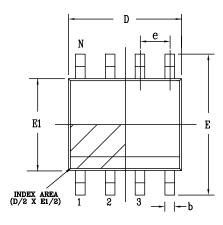
Shutdown Mode

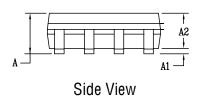
The SP481E is equipped with a Shutdown mode. To enable the shutdown state, both driver and receiver must be disabled simultaneously. A logic LOW on DE (pin 3) and a Logic HIGH on $\overline{\text{RE}}$ (pin 2) will put the SP481E into Shutdown mode. In Shutdown, supply current will drop to typically $1\mu\text{A}$.

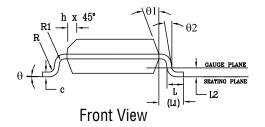
	INPUTS			OUT	PUTS
RE	DE	DI	LINE CONDITION	А	В
Х	1	1	No Fault	1	0
Х	1	0	No Fault	0	1
Х	0	Х	X	Z	Z
X	1	X	Fault	Z	Z

Table 1: Transmit Function Truth Table

INPUTS			OUTPUTS
RE	DE	A - B	R
0	0	0.2V	1
0	0	-0.2V	0
0	0	Inputs Open	1
1	0	Х	Z


Table 2: Receive Function Truth Table




Mechanical Dimensions

NSOIC8

Top View

PACKAGE OUTLINE NSOIC .150" BODY JEDEC MS-012 VARIATION AA						
SYMBOLS		DIMENSION ontrol Unit)			DIMENSION: ence Unit)	
	MIN	NOM	MAX	MIN	NOM	MAX
Α	1.35	_	1.75	0.053	I	0.069
A1	0.10	_	0.25	0.004	_	0.010
A2	1.25	_	1.65	0.049	_	0.065
b	0.31	_	0.51	0.012	_	0.020
С	0.17	_	0.25	0.007	_	0.010
Е		6.00 BSC		0.236 BSC		
E1		3.90 BS0)	0.154 BSC		
е		1.27 BS0		0.050 BSC		
h	0.25	_	0.50	0.010	_	0.020
L	0.40	_	1.27	0.016		0.050
L1		1.04 REF	-	0.041 REF		
L2		0.25 BS0	2	0.010 BSC		
R	0.07	_	_	0.003		_
R1	0.07	_	_	0.003	_	l —
q	0,	_	8*	0,		8°
q.	5°	_	15°	5°	_	15°
q2	0,	_	_	0,		_
D	4	.90 BS	C	0	.193 BS	SC
N	8					

Drawing No: POD-00000108

8/9

Revision: A

REV 1.0.5

Ordering Information⁽¹⁾

Part Number	Operating Temperature Range	Lead-Free	Package	Packaging Method
SP481ECN-L/TR	0°C to 70°C			Reel
SP481EEN-L/TR	-40°C to 85°C			Reel
SP485ECN-L	0°C to 70°C	Yes ⁽²⁾	8-pin NSOIC	Tube
SP485ECN-L/TR	0 0 10 70 0			Reel
SP485EEN-L	40°C to 95°C			Tube
SP485EEN-L/TR	-40°C to 85°C			Reel
SP485EMN-L/TR	-40°C to 125°C			Reel

NOTE:

- 1. Refer to www.exar.com/SP481E and www.exar.com/SP485E for most up-to-date Ordering Information.
- 2. Visit www.exar.com for additional information on Environmental Rating.

Revision History

Revision	Date	Description
	05/11/07	Legacy Sipex Datasheet
1.0.0	12/18/08	Convert to Exar Format. Update ordering information as a result of discontinued Lead type package options per PDN 081126-01. Remove "Top Mark" information from ordering page.
1.0.1	11/19/09	Correct table 1 error for driver output A and B outputs
1.0.2	08/08/10	Change SP485EMN-L and SP485EMN-L/TR temperature range error from +85C to +125C in ordering information section.
1.0.3	05/27/11	Remove driver minimum limits of propagation delay and Rise/Fall time. Remove SP481ECP-L and SP481EEP-L per PDN 110510-01
1.0.4	05/24/13	Correct type errors per PCN 13-0503-01
1.0.5	03/12/18	Update to MaxLinear logo. Remove GND from Differential Output Voltage min (page 2). Update format and ordering information table. Truth Tables moved to page 7 description section. Removed obsolete PDIP from absolute maximums, mechanicals and mechanical dimensions. ESD IEC61000-4-2 Contact Discharge rating added.

Corporate Headquarters: 5966 La Place Court Suite 100 Carlsbad, CA 92008 Tel.:+1 (760) 692-0711 Fax: +1 (760) 444-8598

www.maxlinear.com

High Performance Analog:

1060 Rincon Circle San Jose, CA 95131 Tel.: +1 (669) 265-6100 Fax: +1 (669) 265-6101

Email: serialtechsupport@exar.com

www.exar.com

The content of this document is furnished for informational use only, is subject to change without notice, and should not be construed as a commitment by MaxLinear, Inc. MaxLinear, Inc. assumes no responsibility or liability for any errors or inaccuracies that may appear in the informational content contained in this guide. Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced into, stored in, or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of MaxLinear, Inc.

Maxlinear, Inc. does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless MaxLinear, Inc. receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of MaxLinear, Inc. is adequately protected under the circumstances.

MaxLinear, Inc. may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from MaxLinear, Inc., the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

Company and product names may be registered trademarks or trademarks of the respective owners with which they are associated.