
Adafruit Circuit Playground Bluefruit
Created by Kattni Rembor

Last updated on 2021-08-19 03:36:03 PM EDT

2

7

10

10
10

11

11

11

12
12

13

13

13

14
14

15

15

15

16

16

18

18

19
19

20

20

21

22

22
22

24

24

26

26

28

28

30

30

30

32
32

34
35

35

36

36

37

Guide Contents

Guide Contents

Overview

Guided Tour

Power and Data
Micro B USB connector

JST Battery Input

Alligator/Croc Clip Pads

Microchips

LEDs
Green ON LED

Red #13 LED

10 x Color NeoPixel LED

Speaker

Sensors
Light Sensor

Temperature Sensor

Microphone Audio Sensor

Motion Sensor

Capacitive Touch

Switches & Buttons

Pinouts

Power Pads

Input/Output Pads
Common to all pads

Each Pin!

Internally Used Pins!

Debug Interface

What is CircuitPython?

CircuitPython is based on Python
Why would I use CircuitPython?

CircuitPython on Circuit Playground Bluefruit

Install or Update CircuitPython

Circuit Playground Bluefruit CircuitPython Libraries

Installing CircuitPython Libraries on Circuit Playground Bluefruit

Getting Started with BLE and CircuitPython

Guides

Installing Mu Editor

Download and Install Mu

Using Mu

Creating and Editing Code
Creating Code

Editing Code
Your code changes are run as soon as the file is done saving.

1. Use an editor that writes out the file completely when you save it.

2. Eject or Sync the Drive After Writing

Oh No I Did Something Wrong and Now The CIRCUITPY Drive Doesn't Show Up!!!

Back to Editing Code...

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 2 of 210

38
38

38

39

39

40

41

41

42

42
43

44

45

49

52

53
54

55

56
56

57

58

59
59

59

60

61

62

63

63

64

64

64

64

65

65

65

66

66

66

66

67

67
67

67

67

68
68

68

68

68

Exploring Your First CircuitPython Program
Imports & Libraries

Setting Up The LED

Loop-de-loops

What Happens When My Code Finishes Running?

What if I don't have the loop?

More Changes

Naming Your Program File

Connecting to the Serial Console

Are you using Mu?
Setting Permissions on Linux

Using Something Else?

Interacting with the Serial Console

The REPL

Returning to the serial console

CircuitPython Libraries
Installing the CircuitPython Library Bundle

Example Files

Copying Libraries to Your Board
Example: ImportError Due to Missing Library

Library Install on Non-Express Boards

Updating CircuitPython Libraries/Examples

Frequently Asked Questions
I have to continue using an older version of CircuitPython; where can I find compatible libraries?

Is ESP8266 or ESP32 supported in CircuitPython? Why not?

How do I connect to the Internet with CircuitPython?

Is there asyncio support in CircuitPython?

My RGB NeoPixel/DotStar LED is blinking funny colors - what does it mean?

What is a MemoryError?

What do I do when I encounter a MemoryError?

Can the order of my import statements affect memory?

How can I create my own .mpy files?

How do I check how much memory I have free?

Does CircuitPython support interrupts?

Does Feather M0 support WINC1500?

Can AVRs such as ATmega328 or ATmega2560 run CircuitPython?

Commonly Used Acronyms

CircuitPython Expectations

Always Run the Latest Version of CircuitPython and Libraries

I have to continue using CircuitPython 3.x or 2.x, where can I find compatible libraries?

Switching Between CircuitPython and Arduino

The Difference Between Express And Non-Express Boards

Non-Express Boards: Gemma, Trinket, and QT Py
Small Disk Space

No Audio or NVM

Differences Between CircuitPython and MicroPython

Differences Between CircuitPython and Python
Python Libraries

Integers in CircuitPython

Floating Point Numbers and Digits of Precision for Floats in CircuitPython

Differences between MicroPython and Python

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 3 of 210

69

69

69

69
70

70

70

70

70

71

72

72

72

72

73

74

74
75

75

77

77

77
77

78

78

78

79

80

81

82
82

82

83

86
86

87

88

89

91

92

93

93
93

94

95

96

97

98

Troubleshooting

Always Run the Latest Version of CircuitPython and Libraries

I have to continue using CircuitPython 5.x, 4.x, 3.x or 2.x, where can I find compatible
libraries?

CPLAYBOOT, TRINKETBOOT, FEATHERBOOT, or GEMMABOOT Drive Not Present
You may have a different board.

MakeCode

MacOS

Windows 10

Windows 7 or 8.1

Windows Explorer Locks Up When Accessing boardnameBOOT Drive

Copying UF2 to boardnameBOOT Drive Hangs at 0% Copied

CIRCUITPY Drive Does Not Appear

Windows 7 and 8.1 Problems

Serial Console in Mu Not Displaying Anything

CircuitPython RGB Status Light

ValueError: Incompatible .mpy file.

CIRCUITPY Drive Issues
Easiest Way: Use storage.erase_filesystem()

Old Way: For the Circuit Playground Express, Feather M0 Express, and Metro M0 Express:

Old Way: For Non-Express Boards with a UF2 bootloader (Gemma M0, Trinket M0):

Old Way: For non-Express Boards without a UF2 bootloader (Feather M0 Basic Proto, Feather Adalogger,
Arduino Zero):

Running Out of File Space on Non-Express Boards
Delete something!

Use tabs

MacOS loves to add extra files.

Prevent & Remove MacOS Hidden Files

Copy Files on MacOS Without Creating Hidden Files

Other MacOS Space-Saving Tips

Device locked up or boot looping

Uninstalling CircuitPython
Backup Your Code

Moving Circuit Playground Express to MakeCode

Moving to Arduino

Welcome to the Community!
Adafruit Discord

Adafruit Forums

Adafruit Github

ReadTheDocs

CircuitPython Made Easy

CircuitPython Playground

CircuitPython Pins and Modules

CircuitPython Pins
import board

I2C, SPI, and UART

What Are All the Available Names?

Microcontroller Pin Names

CircuitPython Built-In Modules

CircuitPython Built-Ins

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 4 of 210

98
98

98

98

98

98

99

100
101
101

102

103
104

104

104

106
106

109

109

111

112

113

117
118

118

121

122

126
126

127

130

130

131

131

132

133
134

135

138

139

141
141

144

145

146

148

151

152
154

157

159

161

Thing That Are Built In and Work
Flow Control

Math

Tuples, Lists, Arrays, and Dictionaries

Classes, Objects and Functions

Lambdas

Random Numbers

CircuitPython Digital In & Out
Going Beyond the Lesson!

Experiment 1

Experiment 2

CircuitPython Analog In
Creating an Analog Input

GetVoltage Helper

Main Loop

CircuitPython Servo
Servo Wiring

Standard Servo Code

Continuous Servo Code

CircuitPython Audio Out

Basic Tones

Playing Audio Files

CircuitPython Cap Touch
Creating an capacitive touch input

Main Loop

Capacitive Touch and the Audio Pin on Circuit Playground Bluefruit

CircuitPython NeoPixel

CircuitPython DotStar
Wire It Up

The Code

Create the LED

DotStar Helpers

Main Loop

Is it SPI?

Read the Docs

CircuitPython UART Serial
The Code

Wire It Up

Where's my UART?

Trinket M0: Create UART before I2C

CircuitPython I2C
Wire It Up

Find Your Sensor

I2C Sensor Data

Where's my I2C?

CircuitPython HID Keyboard

CircuitPython CPU Temp

CircuitPython Storage
Logging the Temperature

Playground Temperature

Playground Light Sensor

Playground Drum Machine

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 5 of 210

165

169

169

172

172

175

175
175

176

177

177
177

179

179

179

180

180

181

183

183

184

191

191

191
193

194

199
199

200

201

201

202

203

204

206
206

206

207

Playground Sound Meter

Playground Color Picker

The Code

Playground Bluetooth Plotter

The Code

Arduino Support Setup

1. BSP Installation
Recommended: Installing the BSP via the Board Manager

2. LINUX ONLY: adafruit-nrfutil Tool Installation

3. Update the bootloader (nRF52832 ONLY)

Advanced Option: Manually Install the BSP via 'git'
Adafruit nRF52 BSP via git (for core development and PRs only)

Arduino BLE Examples

Example Source Code

Documented Examples

Advertising: Beacon

Complete Code

Output

BLE UART: Controller

Setup

Complete Code

Custom: HRM

HRM Service Definition

Implementing the HRM Service and Characteristics
Service + Characteristic Setup Code Analysis

Full Sample Code

Bluefruit LE Connect
Install Bluefruit LE

Enable Bluetooth

Enable Location Services

Scan for Devices

Connect

Controller Module

Color Picker

Downloads
Files:

Schematic for Circuit Playground Bluefruit

Fab print of Circuit Playground Bluefruit

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 6 of 210

Overview

Circuit Playground Bluefruit is our third board in the Circuit Playground series, another step towards a

perfect introduction to electronics and programming. We've taken the popular Circuit Playground Express

and made it even better! Now the main chip is an nRF52840 microcontroller which is not only more

powerful, but also comes with Bluetooth Low Energy support for wireless connectivity.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 7 of 210

The board is round and has alligator-clip pads around it so you don't have to solder or sew to make it work.

You can power it from USB, a AAA battery pack (http://adafru.it/727), or with a Lipoly battery (for advanced

users). Circuit Playground Bluefruit has built-in USB support. Built in USB means you plug it in to program it

and it just shows up, no special cable or adapter required. Just program your code into the board then

take it on the go!

For folks who are comfortable with an early-release-version that does not support wireless capabilities,

you can also try MakeCode Maker (https://adafru.it/C9N)'s block-based GUI coding environment on this

board.

Here's some of the great goodies baked in to each Circuit Playground Bluefruit:

1 x nRF52840 Cortex M4 processor with Bluetooth Low Energy support

10 x mini NeoPixels, each one can display any color

1 x Motion sensor (LIS3DH triple-axis accelerometer with tap detection, free-fall detection)

1 x Temperature sensor (thermistor)

1 x Light sensor (phototransistor). Can also act as a color sensor and pulse sensor.

1 x Sound sensor (MEMS microphone)

1 x Mini speaker with class D amplifier (7.5mm magnetic speaker/buzzer)

2 x Push buttons, labeled A and B

1 x Slide switch

8 x alligator-clip friendly input/output pins

Includes I2C, UART, 6 pins that can do analog inputs, multiple PWM outputs

Green "ON" LED so you know its powered

Red "#13" LED for basic blinking

Reset button

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 8 of 210

https://www.adafruit.com/products/727
https://maker.makecode.com/

2 MB of SPI Flash storage, used primarily with CircuitPython to store code and libraries.

MicroUSB port for programming and debugging

USB port can act like serial port, keyboard, mouse, joystick or MIDI!

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 9 of 210

Guided Tour

Let us take you on a tour of your Circuit Playground Bluefruit, which we'll shorten to CPB.

Power and Data

Micro B USB connector
This is at the top of the board. We went with the tried and

true micro-B USB connector for power and/or USB

communication (bootloader, serial, HID, etc). Use with any

computer with a standard data/sync cable.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 10 of 210

https://learn.adafruit.com//assets/80461

JST Battery Input
This is at the bottom of the board. You can take your CPB

anywhere and power it from an external battery. This pin

can take up 6V DC input, and has reverse-polarity, over-

current and thermal protections. The circuitry inside will

use either the battery input power or USB power, safely

switching from one to the other. If both are connected, it

will use whichever has the higher voltage. Works great

with a Lithium Polymer battery or our 3xAAA battery packs

with a JST connector on the end. There is no built in

battery charging (so that you can use Alkaline or Lithium

batteries safely)

Alligator/Croc Clip Pads

To make it super-easy to connect to the microcontroller, we have 14 connection pads. You can solder to

them, use alligator/croc clips, sew with conductive thread, even use small metal screws!

Of the 14 pads, you get a wide range of power pins, I2C,

UART, Analog In, Digital In/Out, PWM, and Analog Out.

Some of them can even sense the touch of your finger!

See the next pinouts page for more details!

Microchips

The brains of the operation is the nRF52840 Cortex M4

processor with Bluetooth Low Energy support. It sits at the

top center and is what allows you to run CircuitPython or

Arduino!

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 11 of 210

https://learn.adafruit.com//assets/80462
https://learn.adafruit.com//assets/80463
https://learn.adafruit.com//assets/80468

The Bluetooth antenna for the nRF52840 Bluetooth

functionality is located in the center of the board. If you

run into issues with Bluetooth range, make sure there's

nothing near the antenna that might interfere, such as

metallic surfaces!

We have added a storage chip, called SPI Flash. This is a

very, very small disk drive, only 2 MB large. You can use

this in Arduino or CircuitPython to store files. In

CircuitPython this is where all your code lives, and what

you see when you use the CIRCUITPY drive on your

computer.

LEDs

Green ON LED
To the left of the USB connector. This LED lets you know

that the CPB is powered on. If it's lit, power is good! If it's

dim, flickering or off, there's a power problem and you will

have problems. You can't disable this light, but you can

cover it with electrical tape if you want to make it black.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 12 of 210

https://learn.adafruit.com//assets/80488
https://learn.adafruit.com//assets/80470
https://learn.adafruit.com//assets/80474

Red #13 LED
To the right of the USB connector. This LED does double

duty. Its connected with a series resistor to the digital #13

GPIO pin. It pulses nicely when the CPB is in bootloader

mode, and its also handy for when you want an indicator

LED. Many first projects blink this LED to prove that

programming worked.

10 x Color NeoPixel LED
The ten LEDs surrounding the outer edge of the boards

are all full color, RGB LEDs, each one can be set to any

color in the rainbow. Great for beautiful lighting effects!

The NeoPixels will also help you know when the

bootloader is running (they will turn green) or if it failed to

initialize USB when connected to a computer (they will

turn red).

Speaker

The CPB includes a speaker. It's not going to compete with your HiFi stereo, but it can play simple songs

and tones.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 13 of 210

https://learn.adafruit.com//assets/80475
https://learn.adafruit.com//assets/80476

The speaker is the squarish gray chunk on the bottom left

of the board. There is a small class D amplifier connected

to the speaker so it can get quite loud! Note: it won't

sound good if too loud, so some experimentation may be

necessary

The amplifier is connected to the PWM output AUDIO pin

-- this pin is also available on one of the connection pads

in the lower right.

If you do not want the internal speaker to make noise, you

can turn it off using the shutdown control on pin #11

Sensors

The Circuit Playground Bluefruit has a large number of sensor inputs that let you add all sorts of

interactivity to your project.

Light Sensor
There is an analog light sensor, part number ALS-

PT19 (https://adafru.it/tC2), in the top left part of the board.

This can be used to detect ambient light, with similar

spectral response to the human eye.

This sensor is connect to analog pin A8 and will read

between 0 and 1023 with higher values corresponding to

higher light levels. A reading of about 300 is common for

most indoor light levels.

With some clever code, you can use this as a color sensor

or even a pulse sensor!

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 14 of 210

https://learn.adafruit.com//assets/80478
https://learn.adafruit.com//assets/80479
https://learn.adafruit.com//assets/80480
https://cdn-shop.adafruit.com/product-files/2748/2748%20datasheet.pdf

Temperature Sensor
There is an NTC thermistor (Murata NCP15XH103F03RC)

that we use for temperature sensing. While it isn't an all-in-

one temperature sensor, with linear output, it's easy to

calculate the temperature based on the analog voltage on

analog pin A9. There's a 10K resistor connected to it as a

pull down.

Microphone Audio Sensor
A MEMS microphone can be used to detect audio levels

and even perform basic FFT functions. Instead of an

analog microphone, that requires an external op-amp and

level management, we've decided to go with a PDM

microphone. This is a digital mic, and is a lot smaller and

less expensive! You will have to use the

CircuitPython/Arduino support libraries to read the audio

volume, you cannot read it like an analog voltage

Motion Sensor
We can sense motion with an accelerometer. This sensor

detects acceleration which means it can be used to detect

when its being moved around, as well as gravitational pull

in order to detect orientation.

The LIS3DH 3-axis XYZ accelerometer can be used to

detect tilt, gravity, motion, as well as 'tap' and 'double tap'

strikes on the board. The LIS3DH is connected to an

internal I2C pinset (not the same as the ones on the pads)

and has an optional interrupt output on digital pin D24.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 15 of 210

https://learn.adafruit.com//assets/80481
https://learn.adafruit.com//assets/80482
https://learn.adafruit.com//assets/80483

Capacitive Touch
The CBP has capacitive touch capabilities. This is a great

way to sense human touch without additional

components. Even animals will work if it's directly touching

their skin!

On the Bluefruit you get seven capacitive touch pads: A1 -

A6 and TX. Capacitive touch is supported in both

CircuitPython and Arduino!

Switches & Buttons

There are two large A and B buttons, connected to digital

D4 (Left) and D5 (Right) each. These are unconnected

when not pressed, and connected to 3.3V when pressed,

so they read HIGH. Set the pins D4 (BUTTON_A in

CircuitPython) and D5 (BUTTON_B in CircuitPython) to

use an internal pull-down resistor when reading these pins

so they will read LOW when not pressed.

This small button in the center of the board is for

Resetting the board. You can use this button to restart or

reset the CPB.

If using Arduino or CircuitPython, press this button once to

reset, double-click to enter the bootloader manually.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 16 of 210

https://learn.adafruit.com//assets/80484
https://learn.adafruit.com//assets/80485
https://learn.adafruit.com//assets/80486

There is a single slide switch near the center bottom of

the Circuit Playground Bluefruit. It is connected to digital

D7. The switch is unconnected when slid to the left and

connected to ground when slid to the right. We set pin D7

to use an internal pull-up resistor so that the switch will

read HIGH when slid to the left and LOW when slid to the

right.

This is not an on-off switch, but you can use code to have

this switch control how you want your project to behave

Note that you need to use an internal pull-up for the

slide switch, but an internal pull-down for the push-

buttons.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 17 of 210

https://learn.adafruit.com//assets/80487

Pinouts

Despite having only 14 pads with 8 general purpose I/O pins available, there are a lot of possibilities with

Circuit Playground Bluefruit. We went over all the internals in the last page. On this page we'll go through

each pin/pad to explain what you can do with it.

Other than the Audio pad, no external I/O pads are shared with internal sensors/devices, so you do not

need to worry about 'conflicting' pins or interactions!

Power Pads

There are 6 power pads available, equally spaced around the perimeter.

GND - there are 3 x Ground pads. They are all connected together, and are all the signal/power

ground connections

3.3V - there are two 3.3 Volt output pads. They are connected to the output of the onboard regulator.

The regulator can provide about 500mA max, but that includes all the built in parts too! So you

should roughly budget about 300mA available for your usage (450mA if you are not using the

onboard NeoPixels)

Vout - there is one Voltage Output pad. This is a special power pad, it will be connected to either

the USB power or the battery input, whichever has the higher voltage. This output does not connect

to the regulator so you can draw as much current as your USB port / Battery can provide . There is a

resettable fuse on this pin, so you can draw about 500mA continuous, and 1 Amp peak before it will

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 18 of 210

trip. If the fuse trips, just wait a minute and it will automatically reset

If you want to connect chips, sensors, and low power electronics that requires 3.3V clean power, use the

3.3V pads.

If you want to connect servos, NeoPixels, DotStars or other high power electronics that are OK up to 5V,

use the Vout pad.

Input/Output Pads

Next we will cover the 8 GPIO (General Purpose Input Ouput) pins! For reference you may want to also

check out the datasheet-reference in the downloads section for the core nRF52840. We picked pins that

have a lot of capabilities.

Common to all pads

All the GPIO pads can be used as digital inputs, digital outputs, for LEDs, buttons and switches. In

addition, A1-A6 can be used as analog inputs (12-bit ADC) (TX and Audio can not!). All but Audio can be

used for capacitive touch. All pads can also be used as hardware interrupt inputs.

Each pad can provide up to ~20mA of current. Don't connect a motor or other high-power component

directly to the pins! Instead, use a transistor to power the DC motor on/off (https://adafru.it/aUD)

All of the GPIO pads are 3.3V output level, and should not be used with 5V inputs. In general, most 5V

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 19 of 210

http://learn.adafruit.com/adafruit-arduino-lesson-13-dc-motors

devices are OK with 3.3V output though.

Other than Audio, which is shared with the speaker, all of the pads are completely 'free' pins, they are not

used by the USB connection, LEDs, sensors, etc so you never have to worry about interfering with them

when programming.

Each Pin!

Let's start with Audio which is in the bottom right corner, and work our way counter-clockwise. Because

the nRF52840 is flexible with PWM pins, you can make any of the pins PWM outputs

Audio (a.k.a D12) - This is a designated pin that is OK with high speed PWM signal, so it's great for

playing basic audio clips - it's also connected to the little speaker on board. In can be digital I/O, but if

you do that it will interfere with the built-in speaker. This is the one pin that cannot be used for

capacitive touch.

A1 / D6 - This pin can be digital I/O, or analog input and can be capacitive touch sensor

A2 / D9 - This pin can be digital I/O, or analog input and can be capacitive touch sensor

A3 / D10 - This pin can be digital I/O, or analog input and can be capacitive touch sensor

A4 / SCL / D3 - This pin can be digital I/O, or analog input. This pin is also the designated I2C SCL

pin, and can be capacitive touch sensor

A5 / SDA / D2 - This pin can be digital I/O, or analog input. This pin is also the designated I2C SDA

pin, and can be capacitive touch sensor

A6 / RX / D0 - This pin can be digital I/O, or analog Input. This pin has PWM output, Serial Receive,

and can be capacitive touch sensor

TX / D1 - This pin can be digital I/O. This pin has PWM output, Serial Transmit, and can be capacitive

touch sensor

Internally Used Pins!

These are the names of the pins that are used for built in sensors and such! CircuitPython has more user

friendly names available as well for some pins with things like buttons and LEDs on them - these are

included in parentheses where applicable. Both names will work in CircuitPython!

D4 (BUTTON_A) - Left Button A

D5 (BUTTON_B) - Right Button B

D7 (SLIDE_SWITCH)- Slide Switch

D8 (NEOPIXEL) - Built-in 10 NeoPixels

D11 (SPEAKER_SHUTDOWN; in CircuitPython, use board.SPEAKER_ENABLE) - Power control to the

speaker amp, pulled up by default. Set to output and LOW to turn off the speaker and save power.

D12 / AUDIO (SPEAKER) - Speaker analog output

D13 - Red LED

A8 (LIGHT) - Light Sensor

A9 (TEMPERATURE) - Temperature Sensor

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 20 of 210

D24 - PDM mic data

D25 - PDM mic clock

D26 - Internal I2C SCL for accelerometer

D27 - Accelerometer interrupt

D28 - Internal I2C SDA for accelerometer

D29 ~ D34 - QSPI FLASH chip pins

D35 - Sensor + NeoPixel power pin, default is pulled LOW (to enable power to sensors and NeoPixel).

Set to output and HIGH to turn off power to NeoPixels and light/thermistor/microphone.

Accelerometer does not get turned off (so you can do shake-to-wake). Speaker shutdown pin is

different as well

Debug Interface

There are three debug pads on the back of the Circuit

Playground Bluefruit below the "GROUND" in the

PLAYGROUND label.

Left to right they are:

SWCLK

SWDIO

RESET

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 21 of 210

https://learn.adafruit.com//assets/101986

What is CircuitPython?

CircuitPython is a programming language designed to simplify experimenting and learning to program on

low-cost microcontroller boards. It makes getting started easier than ever with no upfront desktop

downloads needed. Once you get your board set up, open any text editor, and get started editing code.

It's that simple.

CircuitPython is based on Python

Python is the fastest growing programming language. It's taught in schools and universities. It's a high-

level programming language which means it's designed to be easier to read, write and maintain. It

supports modules and packages which means it's easy to reuse your code for other projects. It has a built

in interpreter which means there are no extra steps, like compiling, to get your code to work. And of

course, Python is Open Source Software which means it's free for anyone to use, modify or improve upon.

CircuitPython adds hardware support to all of these amazing features. If you already have Python

knowledge, you can easily apply that to using CircuitPython. If you have no previous experience, it's really

simple to get started!

Why would I use CircuitPython?

CircuitPython is designed to run on microcontroller boards. A microcontroller board is a board with a

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 22 of 210

microcontroller chip that's essentially an itty-bitty all-in-one computer. The board you're holding is a

microcontroller board! CircuitPython is easy to use because all you need is that little board, a USB cable,

and a computer with a USB connection. But that's only the beginning.

Other reasons to use CircuitPython include:

You want to get up and running quickly. Create a file, edit your code, save the file, and it runs

immediately. There is no compiling, no downloading and no uploading needed.

You're new to programming. CircuitPython is designed with education in mind. It's easy to start

learning how to program and you get immediate feedback from the board.

Easily update your code. Since your code lives on the disk drive, you can edit it whenever you like,

you can also keep multiple files around for easy experimentation.

The serial console and REPL. These allow for live feedback from your code and interactive

programming.

File storage. The internal storage for CircuitPython makes it great for data-logging, playing audio

clips, and otherwise interacting with files.

Strong hardware support. There are many libraries and drivers for sensors, breakout boards and

other external components.

It's Python! Python is the fastest-growing programming language. It's taught in schools and

universities. CircuitPython is almost-completely compatible with Python. It simply adds hardware

support.

This is just the beginning. CircuitPython continues to evolve, and is constantly being updated. We

welcome and encourage feedback from the community, and we incorporate this into how we are

developing CircuitPython. That's the core of the open source concept. This makes CircuitPython better for

you and everyone who uses it!

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 23 of 210

CircuitPython on Circuit Playground Bluefruit

Install or Update CircuitPython

Follow this quick step-by-step to install or update CircuitPython on your Circuit Playground Bluefruit.

https://adafru.it/FNK

Click the link above and download the latest UF2 file

Download and save it to your Desktop (or wherever is

handy)

Plug your Circuit Playground Bluefruit into your computer

using a known-good data-capable USB cable.

A lot of people end up using charge-only USB cables and

it is very frustrating! So make sure you have a USB cable

you know is good for data sync.

Double-click the small Reset button in the middle of the

CPB (indicated by the red arrow in the image). The ten

NeoPixel LEDs will all turn red, and then will all turn green.

If they turn all red and stay red, check the USB cable, try

another USB port, etc. The little red LED next to the USB

connector will pulse red - this is ok!

If double-clicking doesn't work the first time, try again.

Sometimes it can take a few tries to get the rhythm right!

(If double-clicking doesn't do it, try a single-click!)

https://adafru.it/FNK

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 24 of 210

https://circuitpython.org/board/circuitplayground_bluefruit/
https://learn.adafruit.com//assets/80530
https://learn.adafruit.com//assets/80532

You will see a new disk drive appear called

CPLAYBTBOOT.

Drag the adafruit_circuitpython_etc.uf2 file to

CPLAYBTBOOT.

The LEDs will turn red. Then, the CPLAYBTBOOT drive

will disappear and a new disk drive called CIRCUITPY will

appear.

That's it, you're done! :)

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 25 of 210

https://learn.adafruit.com//assets/80533
https://learn.adafruit.com//assets/80534
https://learn.adafruit.com//assets/80535

Circuit Playground Bluefruit CircuitPython Libraries

The Circuit Playground Bluefruit is packed full of features like Bluetooth and NeoPixel LEDs. Now that you

have CircuitPython installed on your Circuit Playground Bluefruit, you'll need to install a base set of

CircuitPython libraries to use the features of the board with CircuitPython.

Follow these steps to get the necessary libraries installed.

Installing CircuitPython Libraries on Circuit
Playground Bluefruit

If you do not already have a lib folder on your CIRCUITPY drive, create one now.

Then, download the CircuitPython library bundle that matches your version of CircuitPython from

CircuitPython.org.

https://adafru.it/ENC

The bundle download as a .zip file. Extract the file. Open

the resulting folder.

Open the lib folder found within.

https://adafru.it/ENC

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 26 of 210

https://circuitpython.org/libraries
https://learn.adafruit.com//assets/85257
https://learn.adafruit.com//assets/85258

Once inside, you'll find a lengthy list of folders and .mpy

files. To install a CircuitPython library, you drag the file or

folder from the bundle lib folder to the lib folder on your

CIRCUITPY drive.

Copy the following folders and files from the bundle lib

folder to the lib folder on your CIRCUITPY drive:

adafruit_ble

adafruit_bluefruit_connect

adafruit_bus_device

adafruit_circuitplayground

adafruit_gizmo

adafruit_hid

adafruit_lis3dh.mpy

adafruit_thermistor.mpy

neopixel.mpy

Your lib folder should look like the image on the left.

Now you're all set to use CircuitPython with the features of the Circuit Playground Bluefruit!

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 27 of 210

https://learn.adafruit.com//assets/85259
https://learn.adafruit.com//assets/85694

Getting Started with BLE and CircuitPython

Guides

Getting Started with CircuitPython and Bluetooth Low Energy (https://adafru.it/FxH) - Get started with

CircuitPython, the Adafruit nRF52840 and the Bluefruit LE Connect app.

BLE Light Switch with Feather nRF52840 and Crickit (https://adafru.it/Ile) - Control a robot finger from

across the room to flip on and off the lights!

Color Remote with Circuit Playground Bluefruit (https://adafru.it/Ije) - Mix NeoPixels wirelessly with a

Bluetooth LE remote control!

MagicLight Bulb Color Mixer with Circuit Playground Bluefruit (https://adafru.it/Ilf) - Mix colors on a

MagicLight Bulb wirelessly with a Bluetooth LE remote control.

Bluetooth Turtle Bot with CircuitPython and Crickit (https://adafru.it/Hcx) - Build your own Bluetooth

controlled turtle rover!

Wooden NeoPixel Xmas Tree (https://adafru.it/IlA) - Cut a Christmas tree of wood and mount some

NeoPixels in the tree to create a festive yuletide light display.

Bluefruit TFT Gizmo ANCS Notifier for iOS (https://adafru.it/IlB) - Circuit Playground Bluefruit displays

your iOS notification icons so you know when there's fresh activity!

Bluefruit Playground Hide and Seek (https://adafru.it/HjC) - Use Circuit Playground Bluefruit devices to

create a colorful signal strength-based proximity detector!

Snow Globe with Circuit Playground Bluefruit (https://adafru.it/HgA) - Make your own festive (or

creatively odd!) snow globe with custom lighting effects and Bluetooth control.

Bluetooth Controlled NeoPixel Lightbox (https://adafru.it/IlC) - Great for tracing and writing, this

lightbox lets you adjust color and brightness with your phone.

Circuit Playground Bluefruit NeoPixel Animation and Color Remote Control (https://adafru.it/HE0) -

Control NeoPixel colors and animation remotely over Bluetooth with the Circuit Playground Bluefruit!

Circuit Playground Bluetooth Cauldron (https://adafru.it/IlD) - Build a Bluetooth Controlled Light Up

Cauldron.

NeoPixel Badge Lanyard with Bluetooth LE (https://adafru.it/IlE) - Light up your convention badge and

control colors with your phone!

CircuitPython BLE Controlled NeoPixel Hat (https://adafru.it/IlF) - Wireless control NeoPixels on your

wearables!

Bluefruit nRF52 Feather Learning Guide (https://adafru.it/Chj) - Get started now with our most

powerful Bluefruit board yet!

CircusPython: Jump through Hoops with CircuitPython Bluetooth LE (https://adafru.it/Ima) - Blinka

jumps through a ring of fire, controlled via Bluetooth LE and the Bluefruit LE Connect app!

A CircuitPython BLE Remote Control On/Off Switch (https://adafru.it/Imb) - Make a remote control

on/off switch for a computer with CircuitPython and BLE.

NeoPixel Infinity Cube (https://adafru.it/Imc) - Build a 3D printed, Bluetooth controlled Mirrored Acrylic

and NeoPixel Infinity cube.

CircuitPython BLE Crickit Rover (https://adafru.it/Imd) - Purple Robot with Feather nRF52840 and

Crickit plus NeoPixel underlighting!

Circuit Playground Bluefruit Pumpkin with Lights and Sounds (https://adafru.it/HcB) - Add the Circuit

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 28 of 210

https://learn.adafruit.com/circuitpython-nrf52840
https://learn.adafruit.com/bluetooth-light-switch-with-crickit-and-nrf52840
https://learn.adafruit.com/color-remote-with-circuit-playground-bluefruit
https://learn.adafruit.com/magiclight-bulb-mixer
https://learn.adafruit.com/bluetooth-turtle-bot-with-circuitpython-and-crickit
https://learn.adafruit.com/wooden-neopixel-xmas-tree
https://learn.adafruit.com/ancs-gizmo
https://learn.adafruit.com/hide-n-seek-bluefruit-ornament
https://learn.adafruit.com/snow-globe-bluefruit-cpb
https://learn.adafruit.com/bluetooth-neopixel-lightbox
https://learn.adafruit.com/circuit-playground-bluefruit-neopixel-animation-and-color-remote-control
https://learn.adafruit.com/cpx-cauldron
https://learn.adafruit.com/bluetooth-neopixel-badge-lanyard
https://learn.adafruit.com/circuitpython-feather-ble-neopixel-hat
https://learn.adafruit.com/bluefruit-nrf52-feather-learning-guide
https://learn.adafruit.com/circuspython-jump-through-hoops-with-bluetooth-le
https://learn.adafruit.com/circuitpython-ble-remote-control-on-off
https://learn.adafruit.com/neopixel-infinity-cube
https://learn.adafruit.com/circuitpython-ble-crickit-rover
https://learn.adafruit.com/pumpkin-with-circuit-playground-bluefruit

Playground Bluefruit and STEMMA speaker to an inexpensive plastic pumpkin.

No-Solder LED Disco Tie with Bluetooth (https://adafru.it/Ime) - Build an LED tie controlled by

Bluetooth LE.

Bluetooth Remote Control for the Lego Droid Developer Kit (https://adafru.it/Imf) - Reinvigorating the

Lego Star Wars Droid Developer Kit with an Adafruit powered remote control using Bluetooth LE.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 29 of 210

https://learn.adafruit.com/no-solder-circuit-playground-bluetooth-disco-tie
https://learn.adafruit.com/bluetooth-remote-for-lego-droid

Installing Mu Editor

Mu is a simple code editor that works with the Adafruit CircuitPython boards. It's written in Python and

works on Windows, MacOS, Linux and Raspberry Pi. The serial console is built right in so you get

immediate feedback from your board's serial output!

Download and Install Mu

Download Mu

from https://codewith.mu (https://adafru.it/Be6). Click

the Download or Start Here links there for downloads and

installation instructions. The website has a wealth of other

information, including extensive tutorials and and how-

to's.

Using Mu

The first time you start Mu, you will be prompted to select

your 'mode' - you can always change your mind later. For

now please select CircuitPython!

The current mode is displayed in the lower right corner of

the window, next to the "gear" icon. If the mode says

"Microbit" or something else, click the Mode button in the

upper left, and then choose "CircuitPython" in the dialog

box that appears.

Mu is our recommended editor - please use it (unless you are an experienced coder with a

favorite editor already!)

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 30 of 210

https://learn.adafruit.com//assets/74974
https://codewith.mu/
https://learn.adafruit.com//assets/49641

Mu attempts to auto-detect your board, so please plug in

your CircuitPython device and make sure it shows up as

a CIRCUITPY drive before starting Mu

You can now explore Mu! The three main sections of the window are labeled below; the button bar, the

text editor, and the serial console / REPL.

Now you're ready to code! Let's keep going...

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 31 of 210

https://learn.adafruit.com//assets/49642

Creating and Editing Code

One of the best things about CircuitPython is how simple it is to get code up and running. In this section,

we're going to cover how to create and edit your first CircuitPython program.

To create and edit code, all you'll need is an editor. There are many options. We strongly recommend

using Mu! It's designed for CircuitPython, and it's really simple and easy to use, with a built in serial

console!

If you don't or can't use Mu, there are basic text editors built into every operating system such as Notepad

on Windows, TextEdit on Mac, and gedit on Linux. However, many of these editors don't write back

changes immediately to files that you edit. That can cause problems when using CircuitPython. See the

Editing Code (https://adafru.it/id3) section below. If you want to skip that section for now, make sure you

do "Eject" or "Safe Remove" on Windows or "sync" on Linux after writing a file if you aren't using Mu. (This

is not a problem on MacOS.)

Creating Code

Open your editor, and create a new file. If you are using

Mu, click the New button in the top left

Copy and paste the following code into your editor:

import board

import digitalio

import time

led = digitalio.DigitalInOut(board.LED)

led.direction = digitalio.Direction.OUTPUT

while True:

 led.value = True

 time.sleep(0.5)

 led.value = False

 time.sleep(0.5)

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 32 of 210

https://learn.adafruit.com//assets/49645

If you're using QT Py or a Trinkey, please download the NeoPixel blink example (https://adafru.it/SB2).

For Adafruit CLUE, you'll need to use board.D17 instead of board.LED . The rest of the code remains the

same. Make the following change to the led = line:

led = digitalio.DigitalInOut(board.D17)

For Adafruit ItsyBitsy nRF52840, you'll need to use board.BLUE_LED instead of board.LED . The rest of the

code remains the same. Make the following change to the led = line:

led = digitalio.DigitalInOut(board.BLUE_LED)

It will look like this - note that under the while True: line,

the next four lines have spaces to indent them, but they're

indented exactly the same amount. All other lines have no

spaces before the text.

The QT Py and the Trinkeys do not have a built-in little red LED! There is an addressable RGB

NeoPixel LED. The above example will NOT work on the QT Py or the Trinkeys!

The NeoPixel blink example uses the onboard NeoPixel, but the time code is the same. You can

use the linked NeoPixel Blink example to follow along with this guide page.

If you are using Adafruit CLUE, you will need to edit the code to use board.D17 as shown below!

If you are using Adafruit ItsyBitsy nRF52840, you will need to edit the code to use

board.BLUE_LED as shown below!

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 33 of 210

https://github.com/adafruit/Adafruit_Learning_System_Guides/blob/master/Welcome_to_CircuitPython/neopixel_blink.py
https://learn.adafruit.com//assets/49646

Save this file as code.py on your CIRCUITPY drive.

On each board (except the ItsyBitsy nRF52840) you'll find a tiny red LED. On the ItsyBitsy nRF52840, you'll

find a tiny blue LED.

The little LED should now be blinking. Once per second.

Congratulations, you've just run your first CircuitPython program!

Editing Code

To edit code, open the code.py file on your CIRCUITPY

drive into your editor.

Make the desired changes to your code. Save the file.

That's it!

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 34 of 210

https://learn.adafruit.com//assets/49649
https://learn.adafruit.com//assets/49650
https://learn.adafruit.com//assets/49651

Your code changes are run as soon as the file is done saving.

There's just one warning we have to give you before we continue...

The CircuitPython code on your board detects when the files are changed or written and will automatically

re-start your code. This makes coding very fast because you save, and it re-runs.

However, you must wait until the file is done being saved before unplugging or resetting your board! On

Windows using some editors this can sometimes take up to 90 seconds, on Linux it can take 30 seconds

to complete because the text editor does not save the file completely. Mac OS does not seem to have this

delay, which is nice!

This is really important to be aware of. If you unplug or reset the board before your computer finishes

writing the file to your board, you can corrupt the drive. If this happens, you may lose the code you've

written, so it's important to backup your code to your computer regularly.

There are a few ways to avoid this:

1. Use an editor that writes out the file completely when you save it.

Recommended editors:

mu (https://adafru.it/Be6) is an editor that safely writes all changes (it's also our recommended editor!)

emacs (https://adafru.it/xNA) is also an editor that will fulIy write files on save (https://adafru.it/Be7)

Sublime Text (https://adafru.it/xNB) safely writes all changes

Visual Studio Code (https://adafru.it/Be9) appears to safely write all changes

gedit on Linux appears to safely write all changes

IDLE (https://adafru.it/IWB), in Python 3.8.1 or later, was fixed (https://adafru.it/IWD) to write all changes

immediately

thonny (https://adafru.it/Qb6) fully writes files on save

Recommended only with particular settings or with add-ons:

vim (https://adafru.it/ek9) / vi safely writes all changes. But set up vim to not write

swapfiles (https://adafru.it/ELO) (.swp files: temporary records of your edits) to CIRCUITPY. Run vim

with vim -n , set the no swapfile option, or set the directory option to write swapfiles elsewhere.

Otherwise the swapfile writes trigger restarts of your program.

The PyCharm IDE (https://adafru.it/xNC) is safe if "Safe Write" is turned on in Settings->System

Settings->Synchronization (true by default).

If you are using Atom (https://adafru.it/fMG), install the fsync-on-save

package (https://adafru.it/E9m) so that it will always write out all changes to files on CIRCUITPY .

Don't Click Reset or Unplug!

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 35 of 210

https://codewith.mu/
https://www.gnu.org/software/emacs/
https://www.gnu.org/software/emacs/manual/html_node/emacs/Customize-Save.html
https://www.sublimetext.com/
https://code.visualstudio.com/
https://docs.python.org/3/library/idle.html
https://bugs.python.org/issue36807
https://thonny.org/
http://www.vim.org/
https://vi.stackexchange.com/a/179
https://www.jetbrains.com/pycharm/
https://atom.io/
https://atom.io/packages/fsync-on-save

SlickEdit (https://adafru.it/DdP) works only if you add a macro to flush the disk (https://adafru.it/ven).

We don't recommend these editors:

notepad (the default Windows editor) and Notepad++ can be slow to write, so we recommend the

editors above! If you are using notepad, be sure to eject the drive (see below)

IDLE in Python 3.8.0 or earlier does not force out changes immediately

nano (on Linux) does not force out changes

geany (on Linux) does not force out changes

Anything else - we haven't tested other editors so please use a recommended one!

2. Eject or Sync the Drive After Writing

If you are using one of our not-recommended-editors, not all is lost! You can still make it work.

On Windows, you can Eject or Safe Remove the CIRCUITPY drive. It won't actually eject, but it will force

the operating system to save your file to disk. On Linux, use the sync command in a terminal to force the

write to disk.

You also need to do this if you use Windows Explorer or a Linux graphical file manager to drag a file onto

CIRCUITPY

Oh No I Did Something Wrong and Now The CIRCUITPY Drive
Doesn't Show Up!!!

Don't worry! Corrupting the drive isn't the end of the world (or your board!). If this happens, follow the

steps found on the Troubleshooting (https://adafru.it/Den) page of every board guide to get your board

up and running again.

If you are dragging a file from your host computer onto the CIRCUITPY drive, you still need to do

step 2. Eject or Sync (below) to make sure the file is completely written.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 36 of 210

https://www.slickedit.com/
https://forums.adafruit.com/viewtopic.php?f=57&t=144412#p713290
https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting

Back to Editing Code...

Now! Let's try editing the program you added to your board. Open your code.py file into your editor. We'll

make a simple change. Change the first 0.5 to 0.1 . The code should look like this:

import board

import digitalio

import time

led = digitalio.DigitalInOut(board.LED)

led.direction = digitalio.Direction.OUTPUT

while True:

 led.value = True

 time.sleep(0.1)

 led.value = False

 time.sleep(0.5)

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 37 of 210

Leave the rest of the code as-is. Save your file. See what happens to the LED on your board? Something

changed! Do you know why? Let's find out!

Exploring Your First CircuitPython Program

First, we'll take a look at the code we're editing.

Here is the original code again:

import board

import digitalio

import time

led = digitalio.DigitalInOut(board.LED)

led.direction = digitalio.Direction.OUTPUT

while True:

 led.value = True

 time.sleep(0.5)

 led.value = False

 time.sleep(0.5)

Imports & Libraries

Each CircuitPython program you run needs to have a lot of information to work. The reason CircuitPython

is so simple to use is that most of that information is stored in other files and works in the background. The

files built into CircuitPython are called modules, and the files you load separately are called libraries.

Modules are built into CircuitPython. Libraries are stored on your CIRCUITPY drive in a folder called lib.

import board

import digitalio

import time

The import statements tells the board that you're going to use a particular library in your code. In this

example, we imported three modules: board , digitalio , and time . All three of these modules are built into

CircuitPython, so no separate library files are needed. That's one of the things that makes this an excellent

first example. You don't need any thing extra to make it work! board gives you access to the hardware on

your board, digitalio lets you access that hardware as inputs/outputs and time let's you pass time by

'sleeping'

Setting Up The LED

The next two lines setup the code to use the LED.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 38 of 210

led = digitalio.DigitalInOut(board.LED)

led.direction = digitalio.Direction.OUTPUT

Your board knows the red LED as LED . So, we initialise that pin, and we set it to output. We set led to

equal the rest of that information so we don't have to type it all out again later in our code.

Loop-de-loops

The third section starts with a while statement. while True: essentially means, "forever do the following:".

while True: creates a loop. Code will loop "while" the condition is "true" (vs. false), and as True is never

False, the code will loop forever. All code that is indented under while True: is "inside" the loop.

Inside our loop, we have four items:

while True:

 led.value = True

 time.sleep(0.5)

 led.value = False

 time.sleep(0.5)

First, we have led.value = True . This line tells the LED to turn on. On the next line, we have time.sleep(0.5) .

This line is telling CircuitPython to pause running code for 0.5 seconds. Since this is between turning the

led on and off, the led will be on for 0.5 seconds.

The next two lines are similar. led.value = False tells the LED to turn off, and time.sleep(0.5) tells

CircuitPython to pause for another 0.5 seconds. This occurs between turning the led off and back on so

the LED will be off for 0.5 seconds too.

Then the loop will begin again, and continue to do so as long as the code is running!

So, when you changed the first 0.5 to 0.1 , you decreased the amount of time that the code leaves the

LED on. So it blinks on really quickly before turning off!

Great job! You've edited code in a CircuitPython program!

What Happens When My Code Finishes Running?

When your code finishes running, CircuitPython resets your microcontroller board to prepare it for the next

run of code. That means any set up you did earlier no longer applies, and the pin states are reset.

For example, try reducing the above example to led.value = True . The LED will flash almost too quickly to

see, and turn off. This is because the code finishes running and resets the pin state, and the LED is no

longer receiving a signal.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 39 of 210

To that end, most CircuitPython programs involve some kind of loop, infinite or otherwise

What if I don't have the loop?

If you don't have the loop, the code will run to the end and exit. This can lead to some unexpected

behavior in simple programs like this since the "exit" also resets the state of the hardware. This is a

different behavior than running commands via REPL. So if you are writing a simple program that doesn't

seem to work, you may need to add a loop to the end so the program doesn't exit.

The simplest loop would be:

while True:

 pass

And remember - you can press to exit the loop.

See also the Behavior section in the docs (https://adafru.it/Bvz).

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 40 of 210

https://circuitpython.readthedocs.io/en/latest/README.html#behavior

More Changes

We don't have to stop there! Let's keep going. Change the second 0.5 to 0.1 so it looks like this:

while True:

 led.value = True

 time.sleep(0.1)

 led.value = False

 time.sleep(0.1)

Now it blinks really fast! You decreased the both time that the code leaves the LED on and off!

Now try increasing both of the 0.1 to 1 . Your LED will blink much more slowly because you've increased

the amount of time that the LED is turned on and off.

Well done! You're doing great! You're ready to start into new examples and edit them to see what

happens! These were simple changes, but major changes are done using the same process. Make your

desired change, save it, and get the results. That's really all there is to it!

Naming Your Program File

CircuitPython looks for a code file on the board to run. There are four options: code.txt, code.py, main.txt

and main.py. CircuitPython looks for those files, in that order, and then runs the first one it finds. While we

suggest using code.py as your code file, it is important to know that the other options exist. If your

program doesn't seem to be updating as you work, make sure you haven't created another code file that's

being read instead of the one you're working on.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 41 of 210

Connecting to the Serial Console

One of the staples of CircuitPython (and programming in general!) is something called a "print statement".

This is a line you include in your code that causes your code to output text. A print statement in

CircuitPython looks like this:

print("Hello, world!")

This line would result in:

Hello, world!

However, these print statements need somewhere to display. That's where the serial console comes in!

The serial console receives output from your CircuitPython board sent over USB and displays it so you can

see it. This is necessary when you've included a print statement in your code and you'd like to see what

you printed. It is also helpful for troubleshooting errors, because your board will send errors and the serial

console will print those too.

The serial console requires a terminal program. A terminal is a program that gives you a text-based

interface to perform various tasks.

sudo apt purge modemmanager

Are you using Mu?

If so, good news! The serial console is built into Mu and will autodetect your board making using the

REPL really really easy.

Please note that Mu does yet not work with nRF52 or ESP8266-based CircuitPython boards, skip down to

the next section for details on using a terminal program.

If you're on Linux, and are seeing multi-second delays connecting to the serial console, or are

seeing "AT" and other gibberish when you connect, then the modemmanager service might be

interfering. Just remove it; it doesn't have much use unless you're still using dial-up modems. To

remove, type this command at a shell:

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 42 of 210

First, make sure your CircuitPython board is plugged in. If

you are using Windows 7, make sure you installed the

drivers (https://adafru.it/Amd).

Once in Mu, look for the Serial button in the menu and click it.

Setting Permissions on Linux

On Linux, if you see an error box something like the one below when you press the Serial button, you

need to add yourself to a user group to have permission to connect to the serial console.

On Ubuntu and Debian, add yourself to the dialout group by doing:

sudo adduser $USER dialout

After running the command above, reboot your machine to gain access to the group. On other Linux

distributions, the group you need may be different. See Advanced Serial Console on Mac and

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 43 of 210

https://learn.adafruit.com//assets/49652
file:///welcome-to-circuitpython/installing-circuitpython#windows-7-drivers
https://learn.adafruit.com/welcome-to-circuitpython/advanced-serial-console-on-mac-and-linux

Linux (https://adafru.it/AAI) for details on how to add yourself to the right group.

Using Something Else?

If you're not using Mu to edit, are using ESP8266 or nRF52 CircuitPython, or if for some reason you are not

a fan of the built in serial console, you can run the serial console as a separate program.

Windows requires you to download a terminal program, check out this page for more

details (https://adafru.it/AAH)

Mac and Linux both have one built in, though other options are available for download, check this page for

more details (https://adafru.it/AAI)

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 44 of 210

file:///welcome-to-circuitpython/advanced-serial-console-on-windows
file:///welcome-to-circuitpython/advanced-serial-console-on-mac-and-linux

Interacting with the Serial Console

Once you've successfully connected to the serial console, it's time to start using it.

The code you wrote earlier has no output to the serial console. So, we're going to edit it to create some

output.

Open your code.py file into your editor, and include a print statement. You can print anything you like!

Just include your phrase between the quotation marks inside the parentheses. For example:

import board

import digitalio

import time

led = digitalio.DigitalInOut(board.LED)

led.direction = digitalio.Direction.OUTPUT

while True:

 print("Hello, CircuitPython!")

 led.value = True

 time.sleep(1)

 led.value = False

 time.sleep(1)

Save your file.

Now, let's go take a look at the window with our connection to the serial console.

Excellent! Our print statement is showing up in our console! Try changing the printed text to something

else.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 45 of 210

Keep your serial console window where you can see it. Save your file. You'll see what the serial console

displays when the board reboots. Then you'll see your new change!

The Traceback (most recent call last): is telling you the last thing your board was doing before you saved

your file. This is normal behavior and will happen every time the board resets. This is really handy for

troubleshooting. Let's introduce an error so we can see how it is used.

Delete the e at the end of True from the line led.value = True so that it says led.value = Tru

Save your file. You will notice that your red LED will stop blinking, and you may have a colored status LED

blinking at you. This is because the code is no longer correct and can no longer run properly. We need to

fix it!

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 46 of 210

Usually when you run into errors, it's not because you introduced them on purpose. You may have 200

lines of code, and have no idea where your error could be hiding. This is where the serial console can

help. Let's take a look!

The Traceback (most recent call last): is telling you that the last thing it was able to run was line 10 in your

code. The next line is your error: NameError: name 'Tru' is not defined . This error might not mean a lot to

you, but combined with knowing the issue is on line 10, it gives you a great place to start!

Go back to your code, and take a look at line 10. Obviously, you know what the problem is already. But if

you didn't, you'd want to look at line 10 and see if you could figure it out. If you're still unsure, try googling

the error to get some help. In this case, you know what to look for. You spelled True wrong. Fix the typo

and save your file.

Nice job fixing the error! Your serial console is streaming and your red LED Is blinking again.

The serial console will display any output generated by your code. Some sensors, such as a humidity

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 47 of 210

sensor or a thermistor, receive data and you can use print statements to display that information. You can

also use print statements for troubleshooting. If your code isn't working, and you want to know where it's

failing, you can put print statements in various places to see where it stops printing.

The serial console has many uses, and is an amazing tool overall for learning and programming!

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 48 of 210

The REPL

The other feature of the serial connection is the Read-Evaluate-Print-Loop, or REPL. The REPL allows you

to enter individual lines of code and have them run immediately. It's really handy if you're running into

trouble with a particular program and can't figure out why. It's interactive so it's great for testing new ideas.

To use the REPL, you first need to be connected to the serial console. Once that connection has been

established, you'll want to press Ctrl + C.

If there is code running, it will stop and you'll see Press any key to enter the REPL. Use CTRL-D to reload.

Follow those instructions, and press any key on your keyboard.

The Traceback (most recent call last): is telling you the last thing your board was doing before you pressed

Ctrl + C and interrupted it. The KeyboardInterrupt is you pressing Ctrl + C. This information can be handy

when troubleshooting, but for now, don't worry about it. Just note that it is expected behavior.

If there is no code running, you will enter the REPL immediately after pressing Ctrl + C. There is no

information about what your board was doing before you interrupted it because there is no code running.

Either way, once you press a key you'll see a >>> prompt welcoming you to the REPL!

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 49 of 210

If you have trouble getting to the >>> prompt, try pressing Ctrl + C a few more times.

The first thing you get from the REPL is information about your board.

This line tells you the version of CircuitPython you're using and when it was released. Next, it gives you

the type of board you're using and the type of microcontroller the board uses. Each part of this may be

different for your board depending on the versions you're working with.

This is followed by the CircuitPython prompt.

From this prompt you can run all sorts of commands and code. The first thing we'll do is run help() . This

will tell us where to start exploring the REPL. To run code in the REPL, type it in next to the REPL prompt.

Type help() next to the prompt in the REPL.

Then press enter. You should then see a message.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 50 of 210

First part of the message is another reference to the version of CircuitPython you're using. Second, a URL

for the CircuitPython related project guides. Then... wait. What's this? To list built-in modules, please do

`help("modules")`. Remember the libraries you learned about while going through creating code? That's

exactly what this is talking about! This is a perfect place to start. Let's take a look!

Type help("modules") into the REPL next to the prompt, and press enter.

This is a list of all the core libraries built into CircuitPython. We discussed how board contains all of the

pins on the board that you can use in your code. From the REPL, you are able to see that list!

Type import board into the REPL and press enter. It'll go to a new prompt. It might look like nothing

happened, but that's not the case! If you recall, the import statement simply tells the code to expect to do

something with that module. In this case, it's telling the REPL that you plan to do something with that

module.

Next, type dir(board) into the REPL and press enter.

This is a list of all of the pins on your board that are available for you to use in your code. Each board's list

will differ slightly depending on the number of pins available. Do you see LED ? That's the pin you used to

blink the red LED!

The REPL can also be used to run code. Be aware that any code you enter into the REPL isn't saved

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 51 of 210

anywhere. If you're testing something new that you'd like to keep, make sure you have it saved

somewhere on your computer as well!

Every programmer in every programming language starts with a piece of code that says, "Hello, World."

We're going to say hello to something else. Type into the REPL:

print("Hello, CircuitPython!")

Then press enter.

That's all there is to running code in the REPL! Nice job!

You can write single lines of code that run stand-alone. You can also write entire programs into the REPL

to test them. As we said though, remember that nothing typed into the REPL is saved.

There's a lot the REPL can do for you. It's great for testing new ideas if you want to see if a few new lines

of code will work. It's fantastic for troubleshooting code by entering it one line at a time and finding out

where it fails. It lets you see what libraries are available and explore those libraries.

Try typing more into the REPL to see what happens!

Returning to the serial console

When you're ready to leave the REPL and return to the serial console, simply press Ctrl + D . This will

reload your board and reenter the serial console. You will restart the program you had running before

entering the REPL. In the console window, you'll see any output from the program you had running. And if

your program was affecting anything visual on the board, you'll see that start up again as well.

You can return to the REPL at any time!

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 52 of 210

CircuitPython Libraries

Each CircuitPython program you run needs to have a lot of information to work. The reason CircuitPython

is so simple to use is that most of that information is stored in other files and works in the background.

These files are called libraries. Some of them are built into CircuitPython. Others are stored on your

CIRCUITPY drive in a folder called lib. Part of what makes CircuitPython so awesome is its ability to store

code separately from the firmware itself. Storing code separately from the firmware makes it easier to

update both the code you write and the libraries you depend.

Your board may ship with a lib folder already, it's in the base directory of the drive. If not, simply create the

folder yourself. When you first install CircuitPython, an empty lib directory will be created for you.

CircuitPython libraries work in the same way as regular Python modules so the Python

docs (https://adafru.it/rar) are a great reference for how it all should work. In Python terms, we can place

our library files in the lib directory because its part of the Python path by default.

One downside of this approach of separate libraries is that they are not built in. To use them, one needs to

copy them to the CIRCUITPY drive before they can be used. Fortunately, we provide a bundle full of our

As we continue to develop CircuitPython and create new releases, we will stop supporting older

releases. Visit https://circuitpython.org/downloads to download the latest version of CircuitPython

for your board. You must download the CircuitPython Library Bundle that matches your version of

CircuitPython. Please update CircuitPython and then visit https://circuitpython.org/libraries to

download the latest Library Bundle.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 53 of 210

https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://docs.python.org/3/tutorial/modules.html

libraries.

Our bundle and releases also feature optimized versions of the libraries with the .mpy file extension.

These files take less space on the drive and have a smaller memory footprint as they are loaded.

Installing the CircuitPython Library Bundle

We're constantly updating and improving our libraries, so we don't (at this time) ship our CircuitPython

boards with the full library bundle. Instead, you can find example code in the guides for your board that

depends on external libraries. Some of these libraries may be available from us at Adafruit, some may be

written by community members!

Either way, as you start to explore CircuitPython, you'll want to know how to get libraries on board.

You can grab the latest Adafruit CircuitPython Bundle release by clicking the button below.

Note: Match up the bundle version with the version of CircuitPython you are running - 3.x library for

running any version of CircuitPython 3, 4.x for running any version of CircuitPython 4, etc. If you mix

libraries with major CircuitPython versions, you will most likely get errors due to changes in library

interfaces possible during major version changes.

https://adafru.it/ENC

If you need another version, you can also visit the bundle release page (https://adafru.it/Ayy) which will let

you select exactly what version you're looking for, as well as information about changes.

Either way, download the version that matches your CircuitPython firmware version. If you don't know

the version, look at the initial prompt in the CircuitPython REPL, which reports the version. For example, if

you're running v4.0.1, download the 4.x library bundle. There's also a py bundle which contains the

uncompressed python files, you probably don't want that unless you are doing advanced work on libraries.

After downloading the zip, extract its contents. This is usually done by double clicking on the zip. On Mac

OSX, it places the file in the same directory as the zip.

https://adafru.it/ENC

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 54 of 210

https://circuitpython.org/libraries
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/latest/

Open the bundle folder. Inside you'll find two information files, and two folders. One folder is the lib bundle,

and the other folder is the examples bundle.

Now open the lib folder. When you open the folder, you'll see a large number of mpy files and folders

Example Files

All example files from each library are now included in the bundles, as well as an examples-only bundle.

These are included for two main reasons:

Allow for quick testing of devices.

Provide an example base of code, that is easily built upon for individualized purposes.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 55 of 210

Copying Libraries to Your Board

First you'll want to create a lib folder on your CIRCUITPY drive. Open the drive, right click, choose the

option to create a new folder, and call it lib. Then, open the lib folder you extracted from the downloaded

zip. Inside you'll find a number of folders and .mpy files. Find the library you'd like to use, and copy it to the

lib folder on CIRCUITPY.

This also applies to example files. They are only supplied as raw .py files, so they may need to be

converted to .mpy using the mpy-cross utility if you encounter MemoryErrors . This is discussed in the

CircuitPython Essentials Guide (https://adafru.it/CTw). Usage is the same as described above in the

Express Boards section. Note: If you do not place examples in a separate folder, you would remove the

examples from the import statement.

Example: ImportError Due to Missing Library

If you choose to load libraries as you need them, you may write up code that tries to use a library you

haven't yet loaded. We're going to demonstrate what happens when you try to utilise a library that you

don't have loaded on your board, and cover the steps required to resolve the issue.

This demonstration will only return an error if you do not have the required library loaded into the lib folder

on your CIRCUITPY drive.

Let's use a modified version of the blinky example.

import board

import time

import simpleio

led = simpleio.DigitalOut(board.D13)

while True:

 led.value = True

 time.sleep(0.5)

 led.value = False

 time.sleep(0.5)

Save this file. Nothing happens to your board. Let's check the serial console to see what's going on.

If a library has multiple .mpy files contained in a folder, be sure to copy the entire folder to

CIRCUITPY/lib.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 56 of 210

https://learn.adafruit.com/circuitpython-essentials/circuitpython-expectations#how-can-i-create-my-own-mpy-files-18-6

We have an ImportError . It says there is no module named 'simpleio' . That's the one we just included in our

code!

Click the link above to download the correct bundle. Extract the lib folder from the downloaded bundle file.

Scroll down to find simpleio.mpy. This is the library file we're looking for! Follow the steps above to load

an individual library file.

The LED starts blinking again! Let's check the serial console.

No errors! Excellent. You've successfully resolved an ImportError !

If you run into this error in the future, follow along with the steps above and choose the library that

matches the one you're missing.

Library Install on Non-Express Boards

If you have a Trinket M0 or Gemma M0, you'll want to follow the same steps in the example above to

install libraries as you need them. You don't always need to wait for an ImportError as you probably know

what library you added to your code. Simply open the lib folder you downloaded, find the library you need,

and drag it to the lib folder on your CIRCUITPY drive.

You may end up running out of space on your Trinket M0 or Gemma M0 even if you only load libraries as

you need them. There are a number of steps you can use to try to resolve this issue. You'll find them in the

Troubleshooting page in the Learn guides for your board.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 57 of 210

Updating CircuitPython Libraries/Examples

Libraries and examples are updated from time to time, and it's important to update the files you have on

your CIRCUITPY drive.

To update a single library or example, follow the same steps above. When you drag the library file to your

lib folder, it will ask if you want to replace it. Say yes. That's it!

A new library bundle is released every time there's an update to a library. Updates include things like bug

fixes and new features. It's important to check in every so often to see if the libraries you're using have

been updated.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 58 of 210

Frequently Asked Questions

These are some of the common questions regarding CircuitPython and CircuitPython microcontrollers.

I have to continue using an older version of CircuitPython; where can I
find compatible libraries?

We are no longer building or supporting library bundles for older versions of CircuitPython. We highly

encourage you to update CircuitPython to the latest version (https://adafru.it/Em8) and use the current

version of the libraries (https://adafru.it/ENC). However, if for some reason you cannot update, here are

points to the last available library bundles for previous versions:

2.x (https://adafru.it/FJA)

3.x (https://adafru.it/FJB)

4.x (https://adafru.it/QDL)

5.x (https://adafru.it/QDJ)

Is ESP8266 or ESP32 supported in CircuitPython? Why not?

We dropped ESP8266 support as of 4.x - For more information please read about it here!

https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-for-esp8266 (https://adafru.it/CiG)

We do not support ESP32 because it does not have native USB. We do support ESP32-S2, which does.

As we continue to develop CircuitPython and create new releases, we will stop supporting older

releases. Visit https://circuitpython.org/downloads to download the latest version of CircuitPython

for your board. You must download the CircuitPython Library Bundle that matches your version of

CircuitPython. Please update CircuitPython and then visit https://circuitpython.org/libraries to

download the latest Library Bundle.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 59 of 210

https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20190903/adafruit-circuitpython-bundle-2.x-mpy-20190903.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20190903/adafruit-circuitpython-bundle-3.x-mpy-20190903.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20200707/adafruit-circuitpython-bundle-4.x-mpy-20200707.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20210129/adafruit-circuitpython-bundle-5.x-mpy-20210129.zip
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-for-esp8266

 How do I connect to the Internet with CircuitPython?

If you'd like to add WiFi support, check out our guide on ESP32/ESP8266 as a co-

processor. (https://adafru.it/Dwa)

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 60 of 210

https://learn.adafruit.com/adding-a-wifi-co-processor-to-circuitpython-esp8266-esp32

 Is there asyncio support in CircuitPython?

We do not have asyncio support in CircuitPython at this time. However, async and await are turned on

in many builds, and we are looking at how to use event loops and other constructs effectively and

easily.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 61 of 210

 My RGB NeoPixel/DotStar LED is blinking funny colors - what does it
mean?

The status LED can tell you what's going on with your CircuitPython board. Read more here for what the

colors mean! (https://adafru.it/Den)

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 62 of 210

https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting#circuitpython-rgb-status-light-20-18

What is a MemoryError ?

Memory allocation errors happen when you're trying to store too much on the board. The CircuitPython

microcontroller boards have a limited amount of memory available. You can have about 250 lines of code

on the M0 Express boards. If you try to import too many libraries, a combination of large libraries, or run a

program with too many lines of code, your code will fail to run and you will receive a MemoryError in the

serial console (REPL).

What do I do when I encounter a MemoryError ?

Try resetting your board. Each time you reset the board, it reallocates the memory. While this is unlikely to

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 63 of 210

resolve your issue, it's a simple step and is worth trying.

Make sure you are using .mpy versions of libraries. All of the CircuitPython libraries are available in the

bundle in a .mpy format which takes up less memory than .py format. Be sure that you're using the latest

library bundle (https://adafru.it/uap) for your version of CircuitPython.

If that does not resolve your issue, try shortening your code. Shorten comments, remove extraneous or

unneeded code, or any other clean up you can do to shorten your code. If you're using a lot of functions,

you could try moving those into a separate library, creating a .mpy of that library, and importing it into

your code.

You can turn your entire file into a .mpy and import that into code.py . This means you will be unable to

edit your code live on the board, but it can save you space.

Can the order of my import statements affect memory?

It can because the memory gets fragmented differently depending on allocation order and the size of

objects. Loading .mpy files uses less memory so its recommended to do that for files you aren't editing.

How can I create my own .mpy files?

You can make your own .mpy versions of files with mpy-cross .

You can download mpy-cross for your operating system from https://adafruit-circuit-

python.s3.amazonaws.com/index.html?prefix=bin/mpy-cross/ (https://adafru.it/QDK). Builds are available

for Windows, macOS, x64 Linux, and Raspberry Pi Linux. Choose the latest `mpy-cross` whose version

matches the version of CircuitPython you are using.

To make a .mpy file, run ./mpy-cross path/to/yourfile.py to create a yourfile.mpy in the same directory as the

original file.

How do I check how much memory I have free?

import gc

gc.mem_free()

Will give you the number of bytes available for use.

Does CircuitPython support interrupts?

No. CircuitPython does not currently support interrupts. We do not have an estimated time for when they

will be included.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 64 of 210

https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases
https://adafruit-circuit-python.s3.amazonaws.com/index.html?prefix=bin/mpy-cross/

Does Feather M0 support WINC1500?

No, WINC1500 will not fit into the M0 flash space.

Can AVRs such as ATmega328 or ATmega2560 run CircuitPython?

No.

Commonly Used Acronyms

CP or CPy = CircuitPython (https://adafru.it/cpy-welcome)

CPC = Circuit Playground Classic (https://adafru.it/ncE)

CPX = Circuit Playground Express (https://adafru.it/wpF)

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 65 of 210

https://learn.adafruit.com/welcome-to-circuitpython
https://www.adafruit.com/product/3000
https://www.adafruit.com/product/3333

CircuitPython Expectations

Always Run the Latest Version of CircuitPython and
Libraries

As we continue to develop CircuitPython and create new releases, we will stop supporting older releases.

You need to update to the latest CircuitPython (https://adafru.it/Em8).

You need to download the CircuitPython Library Bundle that matches your version of CircuitPython.

Please update CircuitPython and then download the latest bundle (https://adafru.it/ENC).

As we release new versions of CircuitPython, we will stop providing the previous bundles as automatically

created downloads on the Adafruit CircuitPython Library Bundle repo. If you must continue to use an

earlier version, you can still download the appropriate version of mpy-cross from the particular release of

CircuitPython on the CircuitPython repo and create your own compatible .mpy library files. However, it is

best to update to the latest for both CircuitPython and the library bundle.

I have to continue using CircuitPython 3.x or 2.x,
where can I find compatible libraries?

We are no longer building or supporting the CircuitPython 2.x and 3.x library bundles. We highly

encourage you to update CircuitPython to the latest version (https://adafru.it/Em8) and use the current

version of the libraries (https://adafru.it/ENC). However, if for some reason you cannot update, you can

find the last available 2.x build here (https://adafru.it/FJA) and the last available 3.x build

here (https://adafru.it/FJB).

Switching Between CircuitPython and Arduino

Many of the CircuitPython boards also run Arduino. But how do you switch between the two? Switching

between CircuitPython and Arduino is easy.

If you're currently running Arduino and would like to start using CircuitPython, follow the steps found in

Welcome to CircuitPython: Installing CircuitPython (https://adafru.it/Amd).

As we continue to develop CircuitPython and create new releases, we will stop supporting older

releases. Visit https://circuitpython.org/downloads to download the latest version of CircuitPython

for your board. You must download the CircuitPython Library Bundle that matches your version of

CircuitPython. Please update CircuitPython and then visit https://circuitpython.org/libraries to

download the latest Library Bundle.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 66 of 210

https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20190903/adafruit-circuitpython-bundle-2.x-mpy-20190903.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20190903/adafruit-circuitpython-bundle-3.x-mpy-20190903.zip
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython

If you're currently running CircuitPython and would like to start using Arduino, plug in your board, and then

load your Arduino sketch. If there are any issues, you can double tap the reset button to get into the

bootloader and then try loading your sketch. Always backup any files you're using with CircuitPython that

you want to save as they could be deleted.

That's it! It's super simple to switch between the two.

The Difference Between Express And Non-Express
Boards

We often reference "Express" and "Non-Express" boards when discussing CircuitPython. What does this

mean?

Express refers to the inclusion of an extra 2MB flash chip on the board that provides you with extra space

for CircuitPython and your code. This means that we're able to include more functionality in CircuitPython

and you're able to do more with your code on an Express board than you would on a non-Express board.

Express boards include Circuit Playground Express, ItsyBitsy M0 Express, Feather M0 Express, Metro M0

Express and Metro M4 Express.

Non-Express boards include Trinket M0, Gemma M0, QT Py, Feather M0 Basic, and other non-Express

Feather M0 variants.

Non-Express Boards: Gemma, Trinket, and QT Py

CircuitPython runs nicely on the Gemma M0, Trinket M0, or QT Py M0 but there are some constraints

Small Disk Space

Since we use the internal flash for disk, and that's shared with runtime code, its limited! Only about 50KB

of space.

No Audio or NVM

Part of giving up that FLASH for disk means we couldn't fit everything in. There is, at this time, no support

for hardware audio playpack or NVM 'eeprom'. Modules audioio and bitbangio are not included. For that

support, check out the Circuit Playground Express or other Express boards.

However, I2C, UART, capacitive touch, NeoPixel, DotStar, PWM, analog in and out, digital IO, logging

storage, and HID do work! Check the CircuitPython Essentials for examples of all of these.

Differences Between CircuitPython and MicroPython

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 67 of 210

For the differences between CircuitPython and MicroPython, check out the CircuitPython

documentation (https://adafru.it/Bvz).

Differences Between CircuitPython and Python

Python (also known as CPython) is the language that MicroPython and CircuitPython are based on. There

are many similarities, but there are also many differences. This is a list of a few of the differences.

Python Libraries

Python is advertised as having "batteries included", meaning that many standard libraries are included.

Unfortunately, for space reasons, many Python libraries are not available. So for instance while we wish

you could import numpy , numpy isn't available (look for the ulab library for similar functions to numpy

which works on many microcontroller boards). So you may have to port some code over yourself!

Integers in CircuitPython

On the non-Express boards, integers can only be up to 31 bits long. Integers of unlimited size are not

supported. The largest positive integer that can be represented is 2 -1, 1073741823, and the most

negative integer possible is -2 , -1073741824.

As of CircuitPython 3.0, Express boards have arbitrarily long integers as in Python.

Floating Point Numbers and Digits of Precision for Floats in CircuitPython

Floating point numbers are single precision in CircuitPython (not double precision as in Python). The

largest floating point magnitude that can be represented is about +/-3.4e38. The smallest magnitude that

can be represented with full accuracy is about +/-1.7e-38, though numbers as small as +/-5.6e-45 can be

represented with reduced accuracy.

CircuitPython's floats have 8 bits of exponent and 22 bits of mantissa (not 24 like regular single precision

floating point), which is about five or six decimal digits of precision.

Differences between MicroPython and Python

For a more detailed list of the differences between CircuitPython and Python, you can look at the

MicroPython documentation. We keep up with MicroPython stable releases, so check out the core

'differences' they document here. (https://adafru.it/zwA)

30

30

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 68 of 210

https://circuitpython.readthedocs.io/en/latest/README.html#differences-from-micropython
http://docs.micropython.org/en/latest/pyboard/genrst/index.html

Troubleshooting

From time to time, you will run into issues when working with CircuitPython. Here are a few things you may

encounter and how to resolve them.

Always Run the Latest Version of CircuitPython and
Libraries

As we continue to develop CircuitPython and create new releases, we will stop supporting older releases.

You need to update to the latest CircuitPython. (https://adafru.it/Em8).

You need to download the CircuitPython Library Bundle that matches your version of CircuitPython.

Please update CircuitPython and then download the latest bundle (https://adafru.it/ENC).

As we release new versions of CircuitPython, we will stop providing the previous bundles as automatically

created downloads on the Adafruit CircuitPython Library Bundle repo. If you must continue to use an

earlier version, you can still download the appropriate version of mpy-cross from the particular release of

CircuitPython on the CircuitPython repo and create your own compatible .mpy library files. However, it is

best to update to the latest for both CircuitPython and the library bundle.

I have to continue using CircuitPython 5.x, 4.x, 3.x or
2.x, where can I find compatible libraries?

We are no longer building or supporting the CircuitPython 2.x, 3.x, 4.x or 5.x library bundles. We highly

encourage you to update CircuitPython to the latest version (https://adafru.it/Em8) and use the current

version of the libraries (https://adafru.it/ENC). However, if for some reason you cannot update, you can

find the last available 2.x build here (https://adafru.it/FJA), the last available 3.x build

here (https://adafru.it/FJB), the last available 4.x build here (https://adafru.it/QDL), and the last available 5.x

build here (https://adafru.it/QDJ).

CPLAYBOOT, TRINKETBOOT, FEATHERBOOT, or
GEMMABOOT Drive Not Present

As we continue to develop CircuitPython and create new releases, we will stop supporting older

releases. Visit https://circuitpython.org/downloads to download the latest version of CircuitPython

for your board. You must download the CircuitPython Library Bundle that matches your version of

CircuitPython. Please update CircuitPython and then visit https://circuitpython.org/libraries to

download the latest Library Bundle.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 69 of 210

https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20190903/adafruit-circuitpython-bundle-2.x-mpy-20190903.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20190903/adafruit-circuitpython-bundle-3.x-mpy-20190903.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20200707/adafruit-circuitpython-bundle-4.x-mpy-20200707.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20210129/adafruit-circuitpython-bundle-5.x-mpy-20210129.zip

You may have a different board.

Only Adafruit Express boards and the Trinket M0 and Gemma M0 boards ship with the UF2 bootloader

 (https://adafru.it/zbX)installed. Feather M0 Basic, Feather M0 Adalogger, and similar boards use a regular

Arduino-compatible bootloader, which does not show a boardnameBOOT drive.

MakeCode

If you are running a MakeCode (https://adafru.it/zbY) program on Circuit Playground Express, press the

reset button just once to get the CPLAYBOOT drive to show up. Pressing it twice will not work.

MacOS

DriveDx and its accompanything SAT SMART Driver can interfere with seeing the BOOT drive. See this

forum post (https://adafru.it/sTc) for how to fix the problem.

Windows 10

Did you install the Adafruit Windows Drivers package by mistake, or did you upgrade to Windows 10 with

the driver package installed? You don't need to install this package on Windows 10 for most Adafruit

boards. The old version (v1.5) can interfere with recognizing your device. Go to Settings -> Apps and

uninstall all the "Adafruit" driver programs.

Windows 7 or 8.1

Version 2.5.0.0 or later of the Adafruit Windows Drivers will fix the missing boardnameBOOT drive problem

on Windows 7 and 8.1. To resolve this, first uninstall the old versions of the drivers:

Unplug any boards. In Uninstall or Change a Program (Control Panel->Programs->Uninstall a

program), uninstall everything named "Windows Driver Package - Adafruit Industries LLC ...".

We recommend (https://adafru.it/Amd) that you upgrade to Windows 10 if possible; an upgrade is probably

still free for you: see the link.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 70 of 210

file:///adafruit-feather-m0-express-designed-for-circuit-python-circuitpython/uf2-bootloader?view=all#uf2-bootloader
file:///makecode/sharing-and-saving?view=all#step-1-bootloader-mode
https://forums.adafruit.com/viewtopic.php?f=58&t=161917&p=799309#p799215
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython#windows-7-and-8-dot-1-drivers-2977910-9

Now install the new 2.5.0.0 (or higher) Adafruit Windows Drivers Package:

https://adafru.it/AB0

When running the installer, you'll be shown a list of drivers to choose from. You can check and

uncheck the boxes to choose which drivers to install.

You should now be done! Test by unplugging and replugging the board. You should see the CIRCUITPY

drive, and when you double-click the reset button (single click on Circuit Playground Express running

MakeCode), you should see the appropriate boardnameBOOT drive.

Let us know in the Adafruit support forums (https://adafru.it/jIf) or on the Adafruit Discord () if this does not

work for you!

Windows Explorer Locks Up When Accessing
boardnameBOOT Drive

On Windows, several third-party programs we know of can cause issues. The symptom is that you try to

access the boardnameBOOT drive, and Windows or Windows Explorer seems to lock up. These programs

are known to cause trouble:

AIDA64: to fix, stop the program. This problem has been reported to AIDA64. They acquired

hardware to test, and released a beta version that fixes the problem. This may have been

incorporated into the latest release. Please let us know in the forums if you test this.

Hard Disk Sentinel

Kaspersky anti-virus: To fix, you may need to disable Kaspersky completely. Disabling some aspects

of Kaspersky does not always solve the problem. This problem has been reported to Kaspersky.

ESET NOD32 anti-virus: We have seen problems with at least version 9.0.386.0, solved by

https://adafru.it/AB0

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 71 of 210

https://github.com/adafruit/Adafruit_Windows_Drivers/releases/latest/adafruit_drivers_*.exe
https://forums.adafruit.com
https://adafru.it/discord

uninstallation.

Copying UF2 to boardnameBOOT Drive Hangs at 0%
Copied

On Windows, a Western DIgital (WD) utility that comes with their external USB drives can interfere with

copying UF2 files to the boardnameBOOT drive. Uninstall that utility to fix the problem.

CIRCUITPY Drive Does Not Appear

Kaspersky anti-virus can block the appearance of the CIRCUITPY drive. We haven't yet figured out a

settings change that prevents this. Complete uninstallation of Kaspersky fixes the problem.

Norton anti-virus can interfere with CIRCUITPY . A user has reported this problem on Windows 7. The user

turned off both Smart Firewall and Auto Protect, and CIRCUITPY then appeared.

Windows 7 and 8.1 Problems

Windows 7 and 8.1 can become confused about USB device installations. We

recommend (https://adafru.it/Amd) that you upgrade to Windows 10 if possible; an upgrade is probably still

free for you: see the link. If not, try cleaning up your USB devices with your board unplugged. Use Uwe

Sieber's Device Cleanup Tool (https://adafru.it/RWd), which you must run as Administrator.

Serial Console in Mu Not Displaying Anything

There are times when the serial console will accurately not display anything, such as, when no code is

currently running, or when code with no serial output is already running before you open the console.

However, if you find yourself in a situation where you feel it should be displaying something like an error,

consider the following.

Depending on the size of your screen or Mu window, when you open the serial console, the serial console

panel may be very small. This can be a problem. A basic CircuitPython error takes 10 lines to display!

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 72 of 210

https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython#windows-7-and-8-dot-1-drivers-2977910-9
https://www.uwe-sieber.de/misc_tools_e.html

Auto-reload is on. Simply save files over USB to run them or enter REPL to disable.

code.py output:

Traceback (most recent call last):

 File "code.py", line 7

SyntaxError: invalid syntax

Press any key to enter the REPL. Use CTRL-D to reload.

More complex errors take even more lines!

Therefore, if your serial console panel is five lines tall or less, you may only see blank lines or blank lines

followed by Press any key to enter the REPL. Use CTRL-D to reload.. If this is the case, you need to either

mouse over the top of the panel to utilise the option to resize the serial panel, or use the scrollbar on the

right side to scroll up and find your message.

This applies to any kind of serial output whether it be error messages or print statements. So before you

start trying to debug your problem on the hardware side, be sure to check that you haven't simply missed

the serial messages due to serial output panel height.

CircuitPython RGB Status Light

Nearly all Adafruit CircuitPython-capable boards have a single NeoPixel or DotStar RGB LED on the board

that indicates the status of CircuitPython. A few boards designed before CircuitPython existed, such as the

Feather M0 Basic, do not.

Circuit Playground Express and Circuit Playground Bluefruit have multiple RGB LEDs, but do NOT have a

status LED. The LEDs are all green when in the bootloader. They do NOT indicate any status while

running CircuitPython.

Here's what the colors and blinking mean:

steady GREEN: code.py (or code.txt , main.py , or main.txt) is running

pulsing GREEN: code.py (etc.) has finished or does not exist

steady YELLOW at start up: (4.0.0-alpha.5 and newer) CircuitPython is waiting for a reset to indicate

that it should start in safe mode

pulsing YELLOW: Circuit Python is in safe mode: it crashed and restarted

steady WHITE: REPL is running

steady BLUE: boot.py is running

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 73 of 210

Colors with multiple flashes following indicate a Python exception and then indicate the line number of the

error. The color of the first flash indicates the type of error:

GREEN: IndentationError

CYAN: SyntaxError

WHITE: NameError

ORANGE: OSError

PURPLE: ValueError

YELLOW: other error

These are followed by flashes indicating the line number, including place value. WHITE flashes are

thousands' place, BLUE are hundreds' place, YELLOW are tens' place, and CYAN are one's place. So for

example, an error on line 32 would flash YELLOW three times and then CYAN two times. Zeroes are

indicated by an extra-long dark gap.

ValueError: Incompatible .mpy file.

This error occurs when importing a module that is stored as a mpy binary file that was generated by a

different version of CircuitPython than the one its being loaded into. In particular, the mpy binary format

changed between CircuitPython versions 2.x and 3.x, as well as between 1.x and 2.x.

So, for instance, if you upgraded to CircuitPython 3.x from 2.x you’ll need to download a newer version of

the library that triggered the error on import . They are all available in the Adafruit

bundle (https://adafru.it/y8E).

Make sure to download a version with 2.0.0 or higher in the filename if you're using CircuitPython version

2.2.4, and the version with 3.0.0 or higher in the filename if you're using CircuitPython version 3.0.

CIRCUITPY Drive Issues

You may find that you can no longer save files to your CIRCUITPY drive. You may find that your

CIRCUITPY stops showing up in your file explorer, or shows up as NO_NAME . These are indicators that

your filesystem has issues.

First check - have you used Arduino to program your board? If so, CircuitPython is no longer able to

provide the USB services. Reset the board so you get a boardnameBOOT drive rather than a CIRCUITPY

drive, copy the latest version of CircuitPython (.uf2) back to the board, then Reset. This may restore

CIRCUITPY functionality.

If still broken - When the CIRCUITPY disk is not safely ejected before being reset by the button or being

disconnected from USB, it may corrupt the flash drive. It can happen on Windows, Mac or Linux.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 74 of 210

https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/latest

In this situation, the board must be completely erased and CircuitPython must be reloaded onto the board.

Easiest Way: Use storage.erase_filesystem()

Starting with version 2.3.0, CircuitPython includes a built-in function to erase and reformat the filesystem. If

you have an older version of CircuitPython on your board, you can update to the newest

version (https://adafru.it/Amd) to do this.

1. Connect to the CircuitPython REPL (https://adafru.it/Bec) using Mu or a terminal program.

2. Type:

>>> import storage

>>> storage.erase_filesystem()

CIRCUITPY will be erased and reformatted, and your board will restart. That's it!

Old Way: For the Circuit Playground Express, Feather M0 Express, and
Metro M0 Express:

If you can't get to the REPL, or you're running a version of CircuitPython before 2.3.0, and you don't want

to upgrade, you can do this.

 1. Download the correct erase file:

https://adafru.it/AdI

https://adafru.it/AdJ

https://adafru.it/EVK

https://adafru.it/AdK

You WILL lose everything on the board when you complete the following steps. If possible, make

a copy of your code before continuing.

https://adafru.it/AdI

https://adafru.it/AdJ

https://adafru.it/EVK

https://adafru.it/AdK

https://adafru.it/EoM

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 75 of 210

file:///welcome-to-circuitpython/installing-circuitpython
file:///welcome-to-circuitpython/kattni-connecting-to-the-serial-console
https://cdn-learn.adafruit.com/assets/assets/000/048/745/original/flash_erase_express.ino.circuitplay.uf2?1512152080
https://cdn-learn.adafruit.com/assets/assets/000/048/746/original/flash_erase_express.ino.feather_m0_express.uf2?1512152098
https://cdn-learn.adafruit.com/assets/assets/000/076/217/original/flash_erase.ino.feather_m4.uf2
https://cdn-learn.adafruit.com/assets/assets/000/048/747/original/flash_erase_express.ino.metro_m0.uf2?1512152103
https://cdn-learn.adafruit.com/assets/assets/000/073/820/original/Metro_M4_QSPI_Eraser.UF2?1553805937

https://adafru.it/EoM

https://adafru.it/DjD

https://adafru.it/DBA

https://adafru.it/Eca

https://adafru.it/Gnc

https://adafru.it/GAN

https://adafru.it/GAO

https://adafru.it/Jat

https://adafru.it/Q5B

 2. Double-click the reset button on the board to bring up the boardnameBOOT drive.

 3. Drag the erase .uf2 file to the boardnameBOOT drive.

 4. The onboard NeoPixel will turn yellow or blue, indicating the erase has started.

 5. After approximately 15 seconds, the mainboard NeoPixel will light up green. On the NeoTrellis M4

this is the first NeoPixel on the grid

 6. Double-click the reset button on the board to bring up the boardnameBOOT drive.

 7. Drag the appropriate latest release of CircuitPython (https://adafru.it/Amd) .uf2 file to

the boardnameBOOT drive.

It should reboot automatically and you should see CIRCUITPY in your file explorer again.

If the LED flashes red during step 5, it means the erase has failed. Repeat the steps starting with 2.

If you haven't already downloaded the latest release of CircuitPython for your board, check out the

https://adafru.it/DjD

https://adafru.it/DBA

https://adafru.it/Eca

https://adafru.it/Gnc

https://adafru.it/GAN

https://adafru.it/GAO

https://adafru.it/Jat

https://adafru.it/Q5B

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 76 of 210

https://cdn-learn.adafruit.com/assets/assets/000/067/535/original/Trellis_M4_QSPI_Eraser.UF2?1544719380
https://cdn-learn.adafruit.com/assets/assets/000/069/314/original/GC_M4_QSPI_Erase.UF2?1547404471
https://cdn-learn.adafruit.com/assets/assets/000/072/252/original/PYPORTAL_QSPI_Eraser.UF2?1551738305
https://cdn-learn.adafruit.com/assets/assets/000/082/950/original/CP_Bluefruit_QSPI_Erase.UF2?1572026649
https://cdn-learn.adafruit.com/assets/assets/000/083/330/original/M4SK_QSPI_Eraser.UF2?1572551433
https://cdn-learn.adafruit.com/assets/assets/000/083/331/original/PyBadge_QSPI_Eraser.UF2?1572551613
https://cdn-learn.adafruit.com/assets/assets/000/088/454/original/CLUE_Flash_Erase.UF2?1581873830
https://cdn-learn.adafruit.com/assets/assets/000/098/741/original/Matrix_Portal_M4_%2528QSPI%2529.UF2?1611076081
file:///welcome-to-circuitpython/installing-circuitpython
file:///welcome-to-circuitpython/installing-circuitpython

installation page (https://adafru.it/Amd). You'll also need to install your libraries and code!

Old Way: For Non-Express Boards with a UF2 bootloader (Gemma M0,
Trinket M0):

If you can't get to the REPL, or you're running a version of CircuitPython before 2.3.0, and you don't want

to upgrade, you can do this.

 1. Download the erase file:

https://adafru.it/AdL

 2. Double-click the reset button on the board to bring up the boardnameBOOT drive.

 3. Drag the erase .uf2 file to the boardnameBOOT drive.

 4. The boot LED will start flashing again, and the boardnameBOOT drive will reappear.

 5. Drag the appropriate latest release CircuitPython (https://adafru.it/Amd) .uf2 file to the

boardnameBOOT drive.

It should reboot automatically and you should see CIRCUITPY in your file explorer again.

If you haven't already downloaded the latest release of CircuitPython for your board, check out the

installation page (https://adafru.it/Amd) You'll also need to install your libraries and code!

Old Way: For non-Express Boards without a UF2 bootloader (Feather
M0 Basic Proto, Feather Adalogger, Arduino Zero):

If you are running a version of CircuitPython before 2.3.0, and you don't want to upgrade, or you can't get

to the REPL, you can do this.

Just follow these directions to reload CircuitPython using bossac (https://adafru.it/Bed), which will erase

and re-create CIRCUITPY .

Running Out of File Space on Non-Express Boards

The file system on the board is very tiny. (Smaller than an ancient floppy disk.) So, its likely you'll run out of

space but don't panic! There are a couple ways to free up space.

The board ships with the Windows 7 serial driver too! Feel free to delete that if you don't need it or have

already installed it. Its ~12KiB or so.

Delete something!

https://adafru.it/AdL

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 77 of 210

https://cdn-learn.adafruit.com/assets/assets/000/048/748/original/erase_m0.uf2?1512152239
file:///welcome-to-circuitpython/installing-circuitpython
file:///welcome-to-circuitpython/installing-circuitpython
file:///welcome-to-circuitpython/non-uf2-installation

The simplest way of freeing up space is to delete files from the drive. Perhaps there are libraries in the lib

folder that you aren't using anymore or test code that isn't in use. Don't delete the lib folder completely,

though, just remove what you don't need.

Use tabs

One unique feature of Python is that the indentation of code matters. Usually the recommendation is to

indent code with four spaces for every indent. In general, we recommend that too. However, one trick to

storing more human-readable code is to use a single tab character for indentation. This approach uses 1/4

of the space for indentation and can be significant when we're counting bytes.

MacOS loves to add extra files.

Luckily you can disable some of the extra hidden files that MacOS adds by running a few commands to

disable search indexing and create zero byte placeholders. Follow the steps below to maximize the

amount of space available on MacOS:

Prevent & Remove MacOS Hidden Files

First find the volume name for your board. With the board plugged in run this command in a terminal to list

all the volumes:

ls -l /Volumes

Look for a volume with a name like CIRCUITPY (the default for CircuitPython). The full path to the volume

is the /Volumes/CIRCUITPY path.

Now follow the steps from this question (https://adafru.it/u1c) to run these terminal commands that stop

hidden files from being created on the board:

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 78 of 210

http://apple.stackexchange.com/questions/6707/how-to-stop-os-x-from-writing-spotlight-and-trash-files-to-memory-cards-and-usb/7135#7135

mdutil -i off /Volumes/CIRCUITPY

cd /Volumes/CIRCUITPY

rm -rf .{,_.}{fseventsd,Spotlight-V*,Trashes}

mkdir .fseventsd

touch .fseventsd/no_log .metadata_never_index .Trashes

cd -

Replace /Volumes/CIRCUITPY in the commands above with the full path to your board's volume if it's

different. At this point all the hidden files should be cleared from the board and some hidden files will be

prevented from being created.

Alternatively, with CircuitPython 4.x and above, the special files and folders mentioned above will be

created automatically if you erase and reformat the filesystem. WARNING: Save your files first! Do this in

the REPL:

>>> import storage

>>> storage.erase_filesystem()

However there are still some cases where hidden files will be created by MacOS. In particular if you copy

a file that was downloaded from the internet it will have special metadata that MacOS stores as a hidden

file. Luckily you can run a copy command from the terminal to copy files without this hidden metadata file.

 See the steps below.

Copy Files on MacOS Without Creating Hidden Files

Once you've disabled and removed hidden files with the above commands on MacOS you need to be

careful to copy files to the board with a special command that prevents future hidden files from being

created. Unfortunately you cannot use drag and drop copy in Finder because it will still create these

hidden extended attribute files in some cases (for files downloaded from the internet, like Adafruit's

modules).

To copy a file or folder use the -X option for the cp command in a terminal. For example to copy a

foo.mpy file to the board use a command like:

 cp -X foo.mpy /Volumes/CIRCUITPY

(Replace foo.mpy with the name of the file you want to copy.) Or to copy a folder and all of its child

files/folders use a command like:

cp -rX folder_to_copy /Volumes/CIRCUITPY

If you are copying to the lib folder, or another folder, make sure it exists before copying.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 79 of 210

if lib does not exist, you'll create a file named lib !

cp -X foo.mpy /Volumes/CIRCUITPY/lib

This is safer, and will complain if a lib folder does not exist.

cp -X foo.mpy /Volumes/CIRCUITPY/lib/

Other MacOS Space-Saving Tips

If you'd like to see the amount of space used on the drive and manually delete hidden files here's how to

do so. First list the amount of space used on the CIRCUITPY drive with the df command:

Lets remove the ._ files first.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 80 of 210

Whoa! We have 13Ki more than before! This space can now be used for libraries and code!

Device locked up or boot looping

In rare cases, it may happen that something in your code.py or boot.py files causes the device to get

locked up, or even go into a boot loop. These are not your everyday Python exceptions, typically it's the

result of a deeper problem within CircuitPython. In this situation, it can be difficult to recover your device if

CIRCUITPY is not allowing you to modify the code.py or boot.py files. Safe mode is one recovery option.

When the device boots up in safe mode it will not run the code.py or boot.py scripts, but will still connect

the CIRCUITPY drive so that you can remove or modify those files as needed.

The method used to manually enter safe mode can be different for different devices. It is also very similar

to the method used for getting into bootloader mode, which is a different thing. So it can take a few tries to

get the timing right. If you end up in bootloader mode, no problem, you can try again without needing to

do anything else.

For most devices:

Press the reset button, and then when the RGB status LED is yellow, press the reset button again.

For ESP32-S2 based devices:

Press and release the reset button, then press and release the boot button about 3/4 of a second later.

Refer to the following diagram for boot sequence details:

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 81 of 210

Uninstalling CircuitPython

A lot of our boards can be used with multiple programming languages. For example, the Circuit

Playground Express can be used with MakeCode, Code.org CS Discoveries, CircuitPython and Arduino.

Maybe you tried CircuitPython and want to go back to MakeCode or Arduino? Not a problem

You can always remove/re-install CircuitPython whenever you want! Heck, you can change your mind

every day!

Backup Your Code

Before uninstalling CircuitPython, don't forget to make a backup of the code you have on the little disk

drive. That means your main.py or code.py any other files, the lib folder etc. You may lose these files when

you remove CircuitPython, so backups are key! Just drag the files to a folder on your laptop or desktop

computer like you would with any USB drive.

Moving Circuit Playground Express to MakeCode

On the Circuit Playground Express (this currently does NOT apply to Circuit Playground Bluefruit), if you

want to go back to using MakeCode, it's really easy. Visit makecode.adafruit.com (https://adafru.it/wpC)

and find the program you want to upload. Click Download to download the .uf2 file that is generated by

MakeCode.

Now double-click your CircuitPython board until you see the onboard LED(s) turn green and the ...BOOT

directory shows up.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 82 of 210

https://makecode.adafruit.com

Then find the downloaded MakeCode .uf2 file and drag it to the ...BOOT drive.

Your MakeCode is now running and CircuitPython has been removed. Going forward you only have to

single click the reset button

Moving to Arduino

If you want to change your firmware to Arduino, it's also pretty easy.

Start by plugging in your board, and double-clicking reset until you get the green onboard LED(s) - just like

with MakeCode

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 83 of 210

Within Arduino IDE, select the matching board, say Circuit Playground Express

Select the correct matching Port:

Create a new simple Blink sketch example:

// the setup function runs once when you press reset or power the board

void setup() {

 // initialize digital pin 13 as an output.

 pinMode(13, OUTPUT);

}

// the loop function runs over and over again forever

void loop() {

 digitalWrite(13, HIGH); // turn the LED on (HIGH is the voltage level)

 delay(1000); // wait for a second

 digitalWrite(13, LOW); // turn the LED off by making the voltage LOW

 delay(1000); // wait for a second

}

Make sure the LED(s) are still green, then click Upload to upload Blink. Once it has uploaded successfully,

the serial Port will change so re-select the new Port !

Once Blink is uploaded you should no longer need to double-click to enter bootloader mode, Arduino will

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 84 of 210

automatically reset when you upload

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 85 of 210

Welcome to the Community!

CircuitPython is a programming language that's super simple to get started with and great for learning. It

runs on microcontrollers and works out of the box. You can plug it in and get started with any text editor.

The best part? CircuitPython comes with an amazing, supportive community.

Everyone is welcome! CircuitPython is Open Source. This means it's available for anyone to use, edit, copy

and improve upon. This also means CircuitPython becomes better because of you being a part of it. It

doesn't matter whether this is your first microcontroller board or you're a computer engineer, you have

something important to offer the Adafruit CircuitPython community. We're going to highlight some of the

many ways you can be a part of it!

Adafruit Discord

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 86 of 210

The Adafruit Discord server is the best place to start. Discord is where the community comes together to

volunteer and provide live support of all kinds. From general discussion to detailed problem solving, and

everything in between, Discord is a digital maker space with makers from around the world.

There are many different channels so you can choose the one best suited to your needs. Each channel is

shown on Discord as "#channelname". There's the #help-with-projects channel for assistance with your

current project or help coming up with ideas for your next one. There's the #showandtell channel for

showing off your newest creation. Don't be afraid to ask a question in any channel! If you're unsure,

#general is a great place to start. If another channel is more likely to provide you with a better answer,

someone will guide you.

The help with CircuitPython channel is where to go with your CircuitPython questions. #help-with-

circuitpython is there for new users and developers alike so feel free to ask a question or post a comment!

Everyone of any experience level is welcome to join in on the conversation. We'd love to hear what you

have to say! The #circuitpython channel is available for development discussions as well.

The easiest way to contribute to the community is to assist others on Discord. Supporting others doesn't

always mean answering questions. Join in celebrating successes! Celebrate your mistakes! Sometimes just

hearing that someone else has gone through a similar struggle can be enough to keep a maker moving

forward.

The Adafruit Discord is the 24x7x365 hackerspace that you can bring your granddaughter to.

Visit https://adafru.it/discord ()to sign up for Discord. We're looking forward to meeting you!

Adafruit Forums

The Adafruit Forums (https://adafru.it/jIf) are the perfect place for support. Adafruit has wonderful paid

support folks to answer any questions you may have. Whether your hardware is giving you issues or your

code doesn't seem to be working, the forums are always there for you to ask. You need an Adafruit

account to post to the forums. You can use the same account you use to order from Adafruit.

While Discord may provide you with quicker responses than the forums, the forums are a more reliable

source of information. If you want to be certain you're getting an Adafruit-supported answer, the forums

are the best place to be.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 87 of 210

https://adafru.it/discord
https://forums.adafruit.com

There are forum categories that cover all kinds of topics, including everything Adafruit. The Adafruit

CircuitPython and MicroPython (https://adafru.it/xXA) category under "Supported Products & Projects" is

the best place to post your CircuitPython questions.

Be sure to include the steps you took to get to where you are. If it involves wiring, post a picture! If your

code is giving you trouble, include your code in your post! These are great ways to make sure that there's

enough information to help you with your issue.

You might think you're just getting started, but you definitely know something that someone else doesn't.

The great thing about the forums is that you can help others too! Everyone is welcome and encouraged to

provide constructive feedback to any of the posted questions. This is an excellent way to contribute to the

community and share your knowledge!

Adafruit Github

Whether you're just beginning or are life-long programmer who would like to contribute, there are ways for

everyone to be a part of building CircuitPython. GitHub is the best source of ways to contribute to

CircuitPython (https://adafru.it/tB7) itself. If you need an account, visit https://github.com/

 (https://adafru.it/d6C)and sign up.

If you're new to GitHub or programming in general, there are great opportunities for you. Head over to

adafruit/circuitpython (https://adafru.it/tB7) on GitHub, click on "Issues (https://adafru.it/Bee)", and you'll find

a list that includes issues labeled "good first issue (https://adafru.it/Bef)". These are things we've identified

as something that someone with any level of experience can help with. These issues include options like

updating documentation, providing feedback, and fixing simple bugs.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 88 of 210

https://forums.adafruit.com/viewforum.php?f=60
https://github.com/adafruit/circuitpython
https://github.com/
https://github.com/adafruit/circuitpython
https://github.com/adafruit/circuitpython/issues?page=1&q=is%253Aissue+is%253Aopen
https://github.com/adafruit/circuitpython/issues?q=is%253Aissue+is%253Aopen+label%253A%2522good+first+issue%2522

Already experienced and looking for a challenge? Checkout the rest of the issues list and you'll find plenty

of ways to contribute. You'll find everything from new driver requests to core module updates. There's

plenty of opportunities for everyone at any level!

When working with CircuitPython, you may find problems. If you find a bug, that's great! We love bugs!

Posting a detailed issue to GitHub is an invaluable way to contribute to improving CircuitPython. Be sure to

include the steps to replicate the issue as well as any other information you think is relevant. The more

detail, the better!

Testing new software is easy and incredibly helpful. Simply load the newest version of CircuitPython or a

library onto your CircuitPython hardware, and use it. Let us know about any problems you find by posting

a new issue to GitHub. Software testing on both current and beta releases is a very important part of

contributing CircuitPython. We can't possibly find all the problems ourselves! We need your help to make

CircuitPython even better.

On GitHub, you can submit feature requests, provide feedback, report problems and much more. If you

have questions, remember that Discord and the Forums are both there for help!

ReadTheDocs

ReadTheDocs (https://adafru.it/Beg) is a an excellent resource for a more in depth look at CircuitPython.

This is where you'll find things like API documentation and details about core modules. There is also a

Design Guide that includes contribution guidelines for CircuitPython.

RTD gives you access to a low level look at CircuitPython. There are details about each of the core

modules (https://adafru.it/Beh). Each module lists the available libraries. Each module library page lists the

available parameters and an explanation for each. In many cases, you'll find quick code examples to help

you understand how the modules and parameters work, however it won't have detailed explanations like

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 89 of 210

https://circuitpython.readthedocs.io/
https://circuitpython.readthedocs.io/en/2.x/shared-bindings/index.html

the Learn Guides. If you want help understanding what's going on behind the scenes in any CircuitPython

code you're writing, ReadTheDocs is there to help!

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 90 of 210

CircuitPython Made Easy

CircuitPython Made Easy (https://adafru.it/BQj)

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 91 of 210

https://learn.adafruit.com/circuitpython-made-easy-on-circuit-playground-express

CircuitPython Playground

Here are examples of some of the many things you can do with the Circuit Playground Bluefruit with

CircuitPython!

Many of the following examples are shown using Circuit Playground Express. The code works

exactly the same way on the Circuit Playground Bluefruit. Simply copy the code and follow along

with your Circuit Playground Bluefruit!

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 92 of 210

CircuitPython Pins and Modules

CircuitPython is designed to run on microcontrollers and allows you to interface with all kinds of sensors,

inputs and other hardware peripherals. There are tons of guides showing how to wire up a circuit, and use

CircuitPython to, for example, read data from a sensor, or detect a button press. Most CircuitPython code

includes hardware setup which requires various modules, such as board or digitalio . You import these

modules and then use them in your code. How does CircuitPython know to look for hardware in the

specific place you connected it, and where do these modules come from?

This page explains both. You'll learn how CircuitPython finds the pins on your microcontroller board,

including how to find the available pins for your board and what each pin is named. You'll also learn about

the modules built into CircuitPython, including how to find all the modules available for your board.

CircuitPython Pins

When using hardware peripherals with a CircuitPython compatible microcontroller, you'll almost certainly

be utilising pins. This section will cover how to access your board's pins using CircuitPython, how to

discover what pins and board-specific objects are available in CircuitPython for your board, how to use the

board-specific objects, and how to determine all available pin names for a given pin on your board.

import board

When you're using any kind of hardware peripherals wired up to your microcontroller board, the import list

in your code will include import board . The board module is built into CircuitPython, and is used to provide

access to a series of board-specific objects, including pins. Take a look at your microcontroller board.

You'll notice that next to the pins are pin labels. You can always access a pin by its pin label. However,

there are almost always multiple names for a given pin.

To see all the available board-specific objects and pins for your board, enter the REPL (>>>) and run the

following commands:

import board

dir(board)

Here is the output for the QT Py.

The following pins have labels on the physical QT Py board: A0, A1, A2, A3, SDA, SCL, TX, RX, SCK, MISO,

and MOSI. You see that there are many more entries available in board than the labels on the QT Py.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 93 of 210

You can use the pin names on the physical board, regardless of whether they seem to be specific to a

certain protocol.

For example, you do not have to use the SDA pin for I2C - you can use it for a button or LED.

On the flip side, there may be multiple names for one pin. For example, on the QT Py, pin A0 is labeled on

the physical board silkscreen, but it is available in CircuitPython as both A0 and D0 . For more information

on finding all the names for a given pin, see the What Are All the Available Pin

Names? (https://adafru.it/QkA) section below.

The results of dir(board) for CircuitPython compatible boards will look similar to the results for the QT Py in

terms of the pin names, e.g. A0, D0, etc. However, some boards, for example, the Metro ESP32-S2, have

different styled pin names. Here is the output for the Metro ESP32-S2.

Note that most of the pins are named in an IO# style, such as IO1 and IO2. Those pins on the physical

board are labeled only with a number, so an easy way to know how to access them in CircuitPython, is to

run those commands in the REPL and find the pin naming scheme.

I2C, SPI, and UART

You'll also see there are often (but not always!) three special board-specific objects included: I2C , SPI ,

and UART - each one is for the default pin-set used for each of the three common protocol busses they

are named for. These are called singletons.

What's a singleton? When you create an object in CircuitPython, you are instantiating ('creating') it.

Instantiating an object means you are creating an instance of the object with the unique values that are

provided, or "passed", to it.

For example, When you instantiate an I2C object using the busio module, it expects two pins: clock and

data, typically SCL and SDA. It often looks like this:

i2c = busio.I2C(board.SCL, board.SDA)

If your code is failing to run because it can't find a pin name you provided, verify that you have the

proper pin name by running these commands in the REPL.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 94 of 210

https://learn.adafruit.com/circuitpython-essentials/circuitpython-pins-and-modules#what-are-all-the-available-names-3082670-14

Then, you pass the I2C object to a driver for the hardware you're using. For example, if you were using the

TSL2591 light sensor and its CircuitPython library, the next line of code would be:

tsl2591 = adafruit_tsl2591.TSL2591(i2c)

However, CircuitPython makes this simpler by including the I2C singleton in the board module. Instead of

the two lines of code above, you simply provide the singleton as the I2C object. So if you were using the

TSL2591 and its CircuitPython library, the two above lines of code would be replaced with:

tsl2591 = adafruit_tsl2591.TSL2591(board.I2C())

This eliminates the need for the busio module, and simplifies the code. Behind the scenes, the

board.I2C() object is instantiated when you call it, but not before, and on subsequent calls, it returns the

same object. Basically, it does not create an object until you need it, and provides the same object every

time you need it. You can call board.I2C() as many times as you like, and it will always return the same

object.

What Are All the Available Names?

Many pins on CircuitPython compatible microcontroller boards have multiple names, however, typically,

there's only one name labeled on the physical board. So how do you find out what the other available pin

names are? Simple, with the following script! Each line printed out to the serial console contains the set of

names for a particular pin.

On a microcontroller board running CircuitPython, connect to the serial console. Then, save the following

as code.py on your CIRCUITPY drive.

The UART/SPI/I2C singletons will use the 'default' bus pins for each board - often labeled as

RX/TX (UART), MOSI/MISO/SCK (SPI), or SDA/SCL (I2C). Check your board documentation/pinout

for the default busses.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 95 of 210

"""CircuitPython Essentials Pin Map Script"""

import microcontroller

import board

board_pins = []

for pin in dir(microcontroller.pin):

 if isinstance(getattr(microcontroller.pin, pin), microcontroller.Pin):

 pins = []

 for alias in dir(board):

 if getattr(board, alias) is getattr(microcontroller.pin, pin):

 pins.append("board.{}".format(alias))

 if len(pins) > 0:

 board_pins.append(" ".join(pins))

for pins in sorted(board_pins):

 print(pins)

Here is the result when this script is run on QT Py:

Each line represents a single pin. Find the line containing the pin name that's labeled on the physical

board, and you'll find the other names available for that pin. For example, the first pin on the board is

labeled A0. The first line in the output is board.A0 board.D0 . This means that you can access pin A0 with

both board.A0 and board.D0 .

You'll notice there are two "pins" that aren't labeled on the board but appear in the list: board.NEOPIXEL

and board.NEOPIXEL_POWER . Many boards have several of these special pins that give you access to

built-in board hardware, such as an LED or an on-board sensor. The Qt Py only has one on-board extra

piece of hardware, a NeoPixel LED, so there's only the one available in the list. But you can also control

whether or not power is applied to the NeoPixel, so there's a separate pin for that.

That's all there is to figuring out the available names for a pin on a compatible microcontroller board in

CircuitPython!

Microcontroller Pin Names

The pin names available to you in the CircuitPython board module are not the same as the names of the

pins on the microcontroller itself. The board pin names are aliases to the microcontroller pin names. If you

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 96 of 210

look at the datasheet for your microcontroller, you'll likely find a pinout with a series of pin names, such as

"PA18" or "GPIO5". If you want to get to the actual microcontroller pin name in CircuitPython, you'll need

the microcontroller.pin module. As with board , you can run dir(microcontroller.pin) in the REPL to receive a

list of the microcontroller pin names.

CircuitPython Built-In Modules

There is a set of modules used in most CircuitPython programs. One or more of these modules is always

used in projects involving hardware. Often hardware requires installing a separate library from the Adafruit

CircuitPython Bundle. But, if you try to find board or digitalio in the same bundle, you'll come up lacking.

So, where do these modules come from? They're built into CircuitPython! You can find an comprehensive

list of built-in CircuitPython modules and the technical details of their functionality from CircuitPython

here (https://adafru.it/QkB) and the Python-like modules included here (https://adafru.it/QkC). However, not

every module is available for every board due to size constraints or hardware limitations. How do you find

out what modules are available for your board?

There are two options for this. You can check the support matrix (https://adafru.it/N2a), and search for your

board by name. Or, you can use the REPL.

Plug in your board, connect to the serial console and enter the REPL. Type the following command.

help("modules")

That's it! You now know two ways to find all of the modules built into CircuitPython for your compatible

microcontroller board.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 97 of 210

https://circuitpython.readthedocs.io/en/latest/shared-bindings/index.html#modules
https://circuitpython.readthedocs.io/en/latest/docs/library/index.html
https://circuitpython.readthedocs.io/en/latest/shared-bindings/support_matrix.html#

CircuitPython Built-Ins

CircuitPython comes 'with the kitchen sink' - a lot of the things you know and love about classic Python 3

(sometimes called CPython) already work. There are a few things that don't but we'll try to keep this list

updated as we add more capabilities!

Thing That Are Built In and Work

Flow Control

All the usual if , elif , else , for , while work just as expected.

Math

import math will give you a range of handy mathematical functions.

>>> dir(math)

['__name__', 'e', 'pi', 'sqrt', 'pow', 'exp', 'log', 'cos', 'sin', 'tan', 'acos', 'asin', 'atan', 'atan2', 'ceil', 'copysign', 'fabs', 'floor',

'fmod', 'frexp', 'ldexp', 'modf', 'isfinite', 'isinf', 'isnan', 'trunc', 'radians', 'degrees']

CircuitPython supports 30-bit wide floating point values so you can use int and float whenever you

expect.

Tuples, Lists, Arrays, and Dictionaries

You can organize data in () , [] , and {} including strings, objects, floats, etc.

Classes, Objects and Functions

We use objects and functions extensively in our libraries so check out one of our many examples like this

MCP9808 library (https://adafru.it/BfQ) for class examples.

Lambdas

Yep! You can create function-functions with lambda just the way you like em:

>>> g = lambda x: x**2

>>> g(8)

64

This is not an exhaustive list! It's simply some of the many features you can use.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 98 of 210

https://github.com/adafruit/Adafruit_CircuitPython_MCP9808/blob/master/adafruit_mcp9808.py

Random Numbers

To obtain random numbers:

import random

random.random() will give a floating point number from 0 to 1.0 .

random.randint(min, max) will give you an integer number between min and max .

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 99 of 210

CircuitPython Digital In & Out

The first part of interfacing with hardware is being able to manage digital inputs and outputs. With

Circuitpython it's super easy!

This quick-start example shows how you can use one of the Circuit Playground Express buttons as

an input to control another digital output - the built in LED

Copy and paste the code block into code.py using your favorite text editor, and save the file, to run the

demo

Circuit Playground digitalio example

import time

import board

import digitalio

led = digitalio.DigitalInOut(board.D13)

led.switch_to_output()

button = digitalio.DigitalInOut(board.BUTTON_A)

button.switch_to_input(pull=digitalio.Pull.DOWN)

while True:

 if button.value: # button is pushed

 led.value = True

 else:

 led.value = False

 time.sleep(0.01)

Though the following example uses the Circuit Playground Express to demonstrate, the code

works exactly the same way with the Circuit Playground Bluefruit. Simply copy the code and

follow along with your Circuit Playground Bluefruit!

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 100 of 210

Note that we made the code a little less 'pythonic' than necessary, the if/then could be replaced with a

simple led.value = not button.value but I wanted to make it super clear how to test the inputs. When the

interpreter gets to evaluating button.value that is when it will read the digital input.

Press Button A (the one on the left), and the onboard red LED will turn on!

Note that on the M0/SAMD based CircuitPython boards, at least, you can also have internal pullups with

Pull.UP when using external buttons, but the built in buttons require Pull.DOWN .

Maybe you're setting up your own external button with pullup or pulldown resistor. If you want to turn off

the internal pullup/pulldown simply include button.switch_to_input() .

Going Beyond the Lesson!

It's time to flex your new learnings and try something different!!

Experiment 1

See if you can adjust your code so that you use Button B instead of Button A.

We're using the built-in pushbuttons in this example because it's very easy to get started, but you

can use ALL KINDS of different buttons and switches, even homemade ones such as tinfoil or

pennies, as digital inputs connected to the Digital IO pads!

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 101 of 210

It only takes a small change to switch buttons. If you get stuck, click on the blurry text below to reveal a

hint and then the answer:

You need to change one single, solitary letter!You need to change one single, solitary letter!

You need to change one single, solitary letter!

button =button =

button =

digitalio.DigitalInOut(board.BUTTON_B)digitalio.DigitalInOut(board.BUTTON_B)

digitalio.DigitalInOut(board.BUTTON_B)

Experiment 2

Perhaps you want to be sure there are no accidental illuminations of the red LED! Make it so that BOTH

buttons must be pressed in order to light the red LED.

Hints:

You'll need to declare a variable for the second button, just as you did with the first. You'll also need to setYou'll need to declare a variable for the second button, just as you did with the first. You'll also need to set

You'll need to declare a variable for the second button, just as you did with the first. You'll also need to set

it up as an input, with pull down resistance.it up as an input, with pull down resistance.

it up as an input, with pull down resistance.

It's a good idea to rename the original It's a good idea to rename the original

It's a good idea to rename the original

buttonbutton

button

 variable to variable to

 variable to

buttonA, buttonA,

buttonA,

and the new set to and the new set to

and the new set to

buttonB.buttonB.

buttonB.

To check both buttons in the 'if' statement, you'll use an 'and' to string together both value checks. To check both buttons in the 'if' statement, you'll use an 'and' to string together both value checks.

To check both buttons in the 'if' statement, you'll use an 'and' to string together both value checks.

 if buttonA.value == True and buttonB.value == if buttonA.value == True and buttonB.value ==

 if buttonA.value == True and buttonB.value ==

True:True:

True:

Experiment 3

Try testing the slide switch instead of the buttons. For the slide switch you need to use Pull.UP instead of

Pull.DOWN.

Hints:

switch =switch =

switch =

digitalio.DigitalInOut(board.SLIDE_SWITCH)digitalio.DigitalInOut(board.SLIDE_SWITCH)

digitalio.DigitalInOut(board.SLIDE_SWITCH)

switch.direction = digitalio.Direction.INPUTswitch.direction = digitalio.Direction.INPUT

switch.direction = digitalio.Direction.INPUT

switch.pull = digitalio.Pull.UPswitch.pull = digitalio.Pull.UP

switch.pull = digitalio.Pull.UP

if switch.value is True: # switch is slid to theif switch.value is True: # switch is slid to the

if switch.value is True: # switch is slid to the

leftleft

left

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 102 of 210

CircuitPython Analog In

This quick-start example shows how you can read the analog voltage of a potentiometer connected to the

Circuit Playground Express.

First, connect your potentiometer to the Circuit Playground Express using three alligator clip leads, as

shown. The connections are:

Left pot connection to 3.3V

Center pot (wiper) to A1

Right pot connection to GND

Copy and paste the code block into code.py using your favorite code editor, and save the file, to run the

demo.

Though the following example uses the Circuit Playground Express to demonstrate, the code

works exactly the same way with the Circuit Playground Bluefruit. Simply copy the code and

follow along with your Circuit Playground Bluefruit!

When you turn the knob of the potentiometer, the wiper rotates left and right, increasing or

decreasing the resistance. This, in turn, changes the analog voltage level that will be read by the

Circuit Playground Express on A1.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 103 of 210

Circuit Playground AnalogIn

Reads the analog voltage level from a 10k potentiometer connected to GND, 3.3V, and pin A1

and prints the results to the serial console.

import time

import board

import analogio

analogin = analogio.AnalogIn(board.A1)

def getVoltage(pin): # helper

 return (pin.value * 3.3) / 65536

while True:

 print("Analog Voltage: %f" % getVoltage(analogin))

 time.sleep(0.1)

Creating an Analog Input

analogin = analogio.AnalogIn(board.A1) creates an object named analogin which is connected to the A1 pad

on the Circuit Playground Express.

GetVoltage Helper

getVoltage(pin) is our little helper program. By default, analog readings will range from 0 (minimum) to

65535 (maximum). This helper will convert the 0-65535 reading from pin.value and convert it a 0-3.3V

voltage reading.

Main Loop

The main loop is simple, it will just print out the voltage as a floating point value (the %f indicates to print

as floating point) by calling getVoltage on each of our analog object, in this case the potentiometer.

If you connect to the serial console, you'll see the voltage printed out. Try turning the knob of the

potentiometer to see the voltage change!

You can use many of different kinds of external analog sensors connected to the Analog IO pads,

such as distance sensors, flex sensors, and more!!

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 104 of 210

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 105 of 210

CircuitPython Servo

In order to use servos, we take advantage of pulseio . Now, in theory, you could just use the raw pulseio

calls to set the frequency to 50 Hz and then set the pulse widths. But we would rather make it a little more

elegant and easy!

So, instead we will use adafruit_motor which manages servos for you quite nicely! adafruit_motor is a

library so be sure to grab it from the library bundle if you have not yet (https://adafru.it/zdx)! If you need

help installing the library, check out the CircuitPython Libraries page (https://adafru.it/ABU).

Servos come in two types:

A standard hobby servo - the horn moves 180 degrees (90 degrees in each direction from zero

degrees).

A continuous servo - the horn moves in full rotation like a DC motor. Instead of an angle specified,

you set a throttle value with 1.0 being full forward, 0.5 being half forward, 0 being stopped, and -1

being full reverse, with other values between.

Servo Wiring

The connections for a servo are the same for standard servos and continuous rotation servos.

Connect the servo's brown or black ground wire to ground on the CircuitPython board.

Connect the servo's red power wire to 5V power, USB power is good for a servo or two. For more than

that, you'll need an external battery pack. Do not use 3.3V for powering a servo!

Connect the servo's yellow or white signal wire to the control/data pin, in this case A1 or A2 but you can

use any PWM-capable pin.

Servos will only work on PWM-capable pins! Check your board details to verify which pins have

PWM outputs.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 106 of 210

https://github.com/adafruit/Adafruit_CircuitPython_Bundle
file:///welcome-to-circuitpython/circuitpython-libraries

For example, to wire a servo to Trinket, connect the

ground wire to GND, the power wire to USB, and the

signal wire to 0.

Remember, A2 on Trinket is labeled "0".

For Gemma, use jumper wire alligator clips to connect the

ground wire to GND, the power wire to VOUT, and the

signal wire to A2.

For Circuit Playground Express and Circuit Playground

Bluefruit, use jumper wire alligator clips to connect the

ground wire to GND, the power wire to VOUT, and the

signal wire to A2.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 107 of 210

https://learn.adafruit.com//assets/51927
https://learn.adafruit.com//assets/51928
https://learn.adafruit.com//assets/51991

For QT Py M0, connect the ground wire to GND, the

power wire to 5V, and the signal wire to A2.

For boards like Feather M0 Express, ItsyBitsy M0 Express

and Metro M0 Express, connect the ground wire to any

GND, the power wire to USB or 5V, and the signal wire to

A2.

For the Metro M4 Express, ItsyBitsy M4 Express and the

Feather M4 Express, connect the ground wire to any G or

GND, the power wire to USB or 5V, and the signal wire to

A1.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 108 of 210

https://learn.adafruit.com//assets/97847
https://learn.adafruit.com//assets/51929
https://learn.adafruit.com//assets/53104

Standard Servo Code

Here's an example that will sweep a servo connected to pin A2 from 0 degrees to 180 degrees (-90 to 90

degrees) and back:

"""CircuitPython Essentials Servo standard servo example"""

import time

import board

import pwmio

from adafruit_motor import servo

create a PWMOut object on Pin A2.

pwm = pwmio.PWMOut(board.A2, duty_cycle=2 ** 15, frequency=50)

Create a servo object, my_servo.

my_servo = servo.Servo(pwm)

while True:

 for angle in range(0, 180, 5): # 0 - 180 degrees, 5 degrees at a time.

 my_servo.angle = angle

 time.sleep(0.05)

 for angle in range(180, 0, -5): # 180 - 0 degrees, 5 degrees at a time.

 my_servo.angle = angle

 time.sleep(0.05)

Continuous Servo Code

There are two differences with Continuous Servos vs. Standard Servos:

1. The servo object is created like my_servo = servo.ContinuousServo(pwm) instead of my_servo =

servo.Servo(pwm)

2. Instead of using myservo.angle , you use my_servo.throttle using a throttle value from 1.0 (full on) to 0.0

(stopped) to -1.0 (full reverse). Any number between would be a partial speed forward (positive) or

reverse (negative). This is very similar to standard DC motor control with the adafruit_motor library.

This example runs full forward for 2 seconds, stops for 2 seconds, runs full reverse for 2 seconds, then

stops for 4 seconds.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 109 of 210

"""CircuitPython Essentials Servo continuous rotation servo example"""

import time

import board

import pwmio

from adafruit_motor import servo

create a PWMOut object on Pin A2.

pwm = pwmio.PWMOut(board.A2, frequency=50)

Create a servo object, my_servo.

my_servo = servo.ContinuousServo(pwm)

while True:

 print("forward")

 my_servo.throttle = 1.0

 time.sleep(2.0)

 print("stop")

 my_servo.throttle = 0.0

 time.sleep(2.0)

 print("reverse")

 my_servo.throttle = -1.0

 time.sleep(2.0)

 print("stop")

 my_servo.throttle = 0.0

 time.sleep(4.0)

Pretty simple!

Note that we assume that 0 degrees is 0.5ms and 180 degrees is a pulse width of 2.5ms. That's a bit wider

than the official 1-2ms pulse widths. If you have a servo that has a different range you can initialize the

servo object with a different min_pulse and max_pulse . For example:

my_servo = servo.Servo(pwm, min_pulse = 500, max_pulse = 2500)

For more detailed information on using servos with CircuitPython, check out the CircuitPython section of

the servo guide (https://adafru.it/Bei)!

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 110 of 210

file:///using-servos-with-circuitpython/circuitpython

CircuitPython Audio Out

The Circuit Playground Express has some nice built in audio output capabilities.

There are two ways to get audio output, one is via the small built in speaker. The other is by using alligator

clips to connect a headphone or powered speaker to the A0/AUDIO pin.

The speaker is over here, its small but can make some

loud sounds! You can ENABLE or disable the speaker. If

you disable the speaker, audio will only come out the

A0/AUDIO pin. If you enable the speaker, audio will come

out from both!

If you want to connect a speaker or headphones, use two alligator clips and connect GND to the sleeve of

the headphone, and A0/AUDIO to the tip.

Though the following example uses the Circuit Playground Express to demonstrate, the code

works exactly the same way with the Circuit Playground Bluefruit. Simply copy the code and

follow along with your Circuit Playground Bluefruit!

The A0/AUDIO pin cannot drive a speaker directly, please only connect headphones, or powered

speakers!

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 111 of 210

https://learn.adafruit.com//assets/47227

Basic Tones

We can start by making simple tones. We will play sine waves. We first generate a single period of a sine

wave in python, with the math.sin function, and stick it into sine_wave .

Then we enable the speaker by setting the SPEAKER_ENABLE pin to be an output and True .

We can create the audio object with this line that sets the output pin and the sine wave sample object and

give it the sample array

audio = AudioOut(board.SPEAKER)

sine_wave_sample = RawSample(sine_wave)

Finally you can run audio.play() - if you only want to play the sample once, call as is. If you want it to loop

the sample, which we definitely do so its one long tone, pass in loop=True

You can then do whatever you like, the tone will play in the background until you call audio.stop()

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 112 of 210

import time

import array

import math

import board

import digitalio

try:

 from audiocore import RawSample

except ImportError:

 from audioio import RawSample

try:

 from audioio import AudioOut

except ImportError:

 try:

 from audiopwmio import PWMAudioOut as AudioOut

 except ImportError:

 pass # not always supported by every board!

FREQUENCY = 440 # 440 Hz middle 'A'

SAMPLERATE = 8000 # 8000 samples/second, recommended!

Generate one period of sine wav.

length = SAMPLERATE // FREQUENCY

sine_wave = array.array("H", [0] * length)

for i in range(length):

 sine_wave[i] = int(math.sin(math.pi * 2 * i / length) * (2 ** 15) + 2 ** 15)

Enable the speaker

speaker_enable = digitalio.DigitalInOut(board.SPEAKER_ENABLE)

speaker_enable.direction = digitalio.Direction.OUTPUT

speaker_enable.value = True

audio = AudioOut(board.SPEAKER)

sine_wave_sample = RawSample(sine_wave)

A single sine wave sample is hundredths of a second long. If you set loop=False, it will play

a single instance of the sample (a quick burst of sound) and then silence for the rest of the

duration of the time.sleep(). If loop=True, it will play the single instance of the sample

continuously for the duration of the time.sleep().

audio.play(sine_wave_sample, loop=True) # Play the single sine_wave sample continuously...

time.sleep(1) # for the duration of the sleep (in seconds)

audio.stop() # and then stop.

Playing Audio Files

Tones are lovely but lets play some music! You can drag-and-drop audio files onto the CIRCUITPY drive

and then play them with a Python command

Here's the two files we're going to play:

https://adafru.it/zFK

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 113 of 210

https://cdn-learn.adafruit.com/assets/assets/000/047/231/original/rimshot.wav?1507858005

https://adafru.it/zFK

https://adafru.it/zFL

Click the green buttons to download the wave files, and save them onto your CIRCUITPY drive, alongside

your code.py and lib files

This is the example code we'll be using

https://adafru.it/zFL

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 114 of 210

https://cdn-learn.adafruit.com/assets/assets/000/047/232/original/laugh.wav?1507858014

import board

import digitalio

try:

 from audiocore import WaveFile

except ImportError:

 from audioio import WaveFile

try:

 from audioio import AudioOut

except ImportError:

 try:

 from audiopwmio import PWMAudioOut as AudioOut

 except ImportError:

 pass # not always supported by every board!

Enable the speaker

spkrenable = digitalio.DigitalInOut(board.SPEAKER_ENABLE)

spkrenable.direction = digitalio.Direction.OUTPUT

spkrenable.value = True

Make the 2 input buttons

buttonA = digitalio.DigitalInOut(board.BUTTON_A)

buttonA.direction = digitalio.Direction.INPUT

buttonA.pull = digitalio.Pull.DOWN

buttonB = digitalio.DigitalInOut(board.BUTTON_B)

buttonB.direction = digitalio.Direction.INPUT

buttonB.pull = digitalio.Pull.DOWN

The two files assigned to buttons A & B

audiofiles = ["rimshot.wav", "laugh.wav"]

def play_file(filename):

 print("Playing file: " + filename)

 wave_file = open(filename, "rb")

 with WaveFile(wave_file) as wave:

 with AudioOut(board.SPEAKER) as audio:

 audio.play(wave)

 while audio.playing:

 pass

 print("Finished")

while True:

 if buttonA.value:

 play_file(audiofiles[0])

 if buttonB.value:

 play_file(audiofiles[1])

This example creates two input buttons using the onboard buttons, then has a helper function that will:

1. open a file on the disk drive with wave_file = open(filename, "rb")

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 115 of 210

2. create the wave file object with with WaveFile(wave_file) as wave:

3. create the audio playback object with with AudioOut(board.SPEAKER) as audio:

4. and finally play it until its done:

audio.play(wave)

while audio.playing:

 pass

 Upload the code then try pressing the two buttons one at a time to create your own laugh track!

If you want to use your own sound files, you can! Record, sample, remix, or simply download files from a

sound file site, such as freesample.org. Then, to make sure you have the files converted to the proper

specifications, check out this guide here (https://adafru.it/BvU) that'll show you how! Spoiler alert:

you'll need to make a small, 22Khz (or lower), 16 bit PCM, mono .wav file!

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 116 of 210

https://learn.adafruit.com/microcontroller-compatible-audio-file-conversion

CircuitPython Cap Touch

This quick-start example shows how you can read the capacitive touch sensors built into on seven of

the Circuit Playground Express pads (pad A0/Audio is not a capacitive touch pad).

Copy and paste the code block into code.py using your favorite code editor, and save the file, to run the

demo

Though the following example uses the Circuit Playground Express to demonstrate, the code

works exactly the same way with the Circuit Playground Bluefruit. Simply copy the code and

follow along with your Circuit Playground Bluefruit!

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 117 of 210

Circuit Playground Capacitive Touch

import time

import board

import touchio

touch_A1 = touchio.TouchIn(board.A1)

touch_A2 = touchio.TouchIn(board.A2)

touch_A3 = touchio.TouchIn(board.A3)

touch_A4 = touchio.TouchIn(board.A4)

touch_A5 = touchio.TouchIn(board.A5)

touch_A6 = touchio.TouchIn(board.A6)

touch_TX = touchio.TouchIn(board.TX)

while True:

 if touch_A1.value:

 print("A1 touched!")

 if touch_A2.value:

 print("A2 touched!")

 if touch_A3.value:

 print("A3 touched!")

 if touch_A4.value:

 print("A4 touched!")

 if touch_A5.value:

 print("A5 touched!")

 if touch_A6.value:

 print("A6 touched!")

 if touch_TX.value:

 print("TX touched!")

 time.sleep(0.01)

You can open up the serial console, then touch each touch pad to see the touches detected and printed

out.

Creating an capacitive touch input

Pads A1 - A6 and TX can be used as capacitive TouchIn devices:

touch_A1 = touchio.TouchIn(board.A1)

touch_A2 = touchio.TouchIn(board.A2)

touch_A3 = touchio.TouchIn(board.A3)

touch_A4 = touchio.TouchIn(board.A4)

touch_A5 = touchio.TouchIn(board.A5)

touch_A6 = touchio.TouchIn(board.A6)

touch_TX = touchio.TouchIn(board.TX)

This code creates seven objects, one connected to each of the cap touch pads.

Main Loop

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 118 of 210

The main loop checks each sensor one after the other, to determine if it has been touched. If

touch_A1.value returns True, that means that that pad, A1 , detected a touch. For each pad, if it has been

touched, a message will print.

A small sleep delay is added at the end so the loop doesn't run too fast. You may want to change the

delay from 0.1 seconds to 0 seconds to slow it down or increase it to speed it up.

Note that no extra hardware is required, you can touch the pads directly, but you may want to attach

alligator clips or foil tape to metallic or conductive objects. Try silverware, fruit or other food, liquid,

aluminum foil, and items around your desk!

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 119 of 210

You may need to restart your code/board after changing the attached item because the capacitive touch

code 'calibrates' based on what it sees when it first starts up. So if you get too many touch-signals or not

enough, hit that reset button!

Copper Foil Tape with Conductive Adhesive - 6mm x 15 meter roll

Copper tape can be an interesting addition to your toolbox. The tape itself is made of thin pure copper so its extremely flexible and can

take on nearly any shape. You can easily...

$5.95

In Stock

Copper Foil Tape with Conductive Adhesive - 25mm x 15 meter roll

Copper tape can be an interesting addition to your toolbox. The tape itself is made of thin pure copper so its extremely flexible and can

take on nearly any shape. You can easily...

$19.95

In Stock

Small Alligator Clip Test Lead (set of 12)

Connect this to that without soldering using these handy mini alligator clip test leads. 15" cables with alligator clip on each end, color

coded. You get 12 pieces in 6 colors....

$3.95

In Stock

Add to Cart

Add to Cart

Add to Cart

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 120 of 210

https://www.adafruit.com/product/1128
https://www.adafruit.com/product/1128
https://www.adafruit.com/product/1127
https://www.adafruit.com/product/1127
https://www.adafruit.com/product/1008
https://www.adafruit.com/product/1008

Capacitive Touch and the Audio Pin on Circuit Playground Bluefruit

On the Circuit Playground Bluefruit, if you touch any of the touch pads at the same time as touching the

Audio pin, you may hear a clicking or buzzing coming from the speaker. This is due to how the capacitive

touch on the Bluefruit works. If you run into this and wish to avoid it, you can turn the speaker off using

code by including the following in your code.py:

import digitalio

speaker = digitalio.DigitalInOut(board.SPEAKER_ENABLE)

speaker.switch_to_output(value=False)

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 121 of 210

CircuitPython NeoPixel

NeoPixels are a revolutionary and ultra-popular way to add lights and color to your project. These stranded

RGB lights have the controller inside the LED, so you just push the RGB data and the LEDs do all the work

for you! They're a perfect match for CircuitPython.

You can drive 300 pixels with brightness control (e.g. setting brightness=0.2 to set it to 20% brightness)

and 1000 pixels without (e.g. not setting brightness at all or setting brightness=1.0 in object creation).

That's because to adjust the brightness we have to dynamically re-create the datastream each write.

Here's an example with a lot of different visual effects you can check out. You'll need the neopixel.mpy

library file if you don't have it yet! (https://adafru.it/ENC)

Circuit Playground NeoPixel

import time

import board

import neopixel

pixels = neopixel.NeoPixel(board.NEOPIXEL, 10, brightness=0.2, auto_write=False)

choose which demos to play

1 means play, 0 means don't!

color_chase_demo = 1

Though the following example uses the Circuit Playground Express to demonstrate, the code

works exactly the same way with the Circuit Playground Bluefruit. Simply copy the code and

follow along with your Circuit Playground Bluefruit!

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 122 of 210

https://circuitpython.org/libraries

color_chase_demo = 1

flash_demo = 1

rainbow_demo = 1

rainbow_cycle_demo = 1

def wheel(pos):

 # Input a value 0 to 255 to get a color value.

 # The colours are a transition r - g - b - back to r.

 if pos < 0 or pos > 255:

 return (0, 0, 0)

 if pos < 85:

 return (255 - pos * 3, pos * 3, 0)

 if pos < 170:

 pos -= 85

 return (0, 255 - pos * 3, pos * 3)

 pos -= 170

 return (pos * 3, 0, 255 - pos * 3)

def color_chase(color, wait):

 for i in range(10):

 pixels[i] = color

 time.sleep(wait)

 pixels.show()

 time.sleep(0.5)

def rainbow_cycle(wait):

 for j in range(255):

 for i in range(10):

 rc_index = (i * 256 // 10) + j * 5

 pixels[i] = wheel(rc_index & 255)

 pixels.show()

 time.sleep(wait)

def rainbow(wait):

 for j in range(255):

 for i in range(len(pixels)):

 idx = int(i + j)

 pixels[i] = wheel(idx & 255)

 pixels.show()

 time.sleep(wait)

RED = (255, 0, 0)

YELLOW = (255, 150, 0)

GREEN = (0, 255, 0)

CYAN = (0, 255, 255)

BLUE = (0, 0, 255)

PURPLE = (180, 0, 255)

WHITE = (255, 255, 255)

OFF = (0, 0, 0)

while True:

 if color_chase_demo:

 color_chase(RED, 0.1) # Increase the number to slow down the color chase

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 123 of 210

 color_chase(RED, 0.1) # Increase the number to slow down the color chase

 color_chase(YELLOW, 0.1)

 color_chase(GREEN, 0.1)

 color_chase(CYAN, 0.1)

 color_chase(BLUE, 0.1)

 color_chase(PURPLE, 0.1)

 color_chase(OFF, 0.1)

 if flash_demo:

 pixels.fill(RED)

 pixels.show()

 # Increase or decrease to change the speed of the solid color change.

 time.sleep(1)

 pixels.fill(GREEN)

 pixels.show()

 time.sleep(1)

 pixels.fill(BLUE)

 pixels.show()

 time.sleep(1)

 pixels.fill(WHITE)

 pixels.show()

 time.sleep(1)

 if rainbow_cycle_demo:

 rainbow_cycle(0.05) # Increase the number to slow down the rainbow.

 if rainbow_demo:

 rainbow(0.05) # Increase the number to slow down the rainbow.

The NeoPixel object's argument list requires the pin you'll use (any pin can be used) and the number of

pixels. There are two optional arguments, brightness (range from 0 off to 1.0 full brightness) and

auto_write . auto_write defaults to True when not set. When auto_write is set to True , every change is

immediately written to the strip of pixels, which is easier to use but way slower. if you set auto_write=False

then you will have to call pixels.show() when you want to actually write color data out.

You can easily set colors by indexing into the location pixels[n] = (red, green, blue) . For example, pixels[0] =

(100, 0, 0) will set the first pixel to a medium-brightness red, and pixels[2] = (0, 255, 0) will set the third pixel

to bright green. Then, if you have auto_write=False don't forget to call pixels.show() !

For powering the pixels from the board, the 3.3V regulator output can handle about 500mA peak which is

about 50 pixels with 'average' use. If you want really bright lights and a lot of pixels, we recommend

powering direct from the power source. On the Circuit Playground Express this is the Vout pad - that pad

has direct power from USB or BAT (battery), depending on which is higher voltage.

You aren't limited to the on-board NeoPixels -- externally connected NeoPixels can be driven by

any Digital IO pin.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 124 of 210

Verify the wiring on your strip or device - plugging into the 'DOUT' side is a common mistake! Wire up

NeoPixels only while the Circuit Playground Express is not on, to avoid possible damage!

If the power to the NeoPixels is > 5.5V you may have some difficulty driving some strips, in which case you

may need to lower the voltage to 4.5-5V or use a level shifter

We have a ton more information on general purpose NeoPixel know-how at our NeoPixel

UberGuide https://learn.adafruit.com/adafruit-neopixel-uberguide

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 125 of 210

https://learn.adafruit.com/adafruit-neopixel-uberguide

CircuitPython DotStar

DotStars use two wires, unlike NeoPixel's one wire. They're very similar but you can write to DotStars much

faster with hardware SPI and they have a faster PWM cycle so they are better for light painting.

Any pins can be used but if the two pins can form a hardware SPI port, the library will automatically switch

over to hardware SPI. If you use hardware SPI then you'll get 4 MHz clock rate (that would mean updating

a 64 pixel strand in about 500uS - that's 0.0005 seconds). If you use non-hardware SPI pins you'll drop

down to about 3KHz, 1000 times as slow!

You can drive 300 DotStar LEDs with brightness control (set brightness=1.0 in object creation) and 1000

LEDs without. That's because to adjust the brightness we have to dynamically recreate the data-stream

each write.

You'll need the adafruit_dotstar.mpy library if you don't already have it in your /lib folder! You can get it

from the CircuitPython Library Bundle (https://adafru.it/y8E). If you need help installing the library, check

out the CircuitPython Libraries page (https://adafru.it/ABU).

Wire It Up

You'll need to solder up your DotStars first. Verify your connection is on the DATA INPUT or DI and

CLOCK INPUT or CI side. Plugging into the DATA OUT/DO or CLOCK OUT/CO side is a common mistake!

The connections are labeled and some formats have arrows to indicate the direction the data must flow.

Always verify your wiring with a visual inspection, as the order of the connections can differ from strip to

strip!

For powering the pixels from the board, the 3.3V regulator output can handle about 500mA peak which is

about 50 pixels with 'average' use. If you want really bright lights and a lot of pixels, we recommend

powering direct from an external power source.

On Gemma M0 and Circuit Playground Express this is the Vout pad - that pad has direct power from

USB or the battery, depending on which is higher voltage.

On Trinket M0, Feather M0 Express, Feather M4 Express, ItsyBitsy M0 Express and ItsyBitsy M4

Express the USB or BAT pins will give you direct power from the USB port or battery.

On Metro M0 Express and Metro M4 Express, use the 5V pin regardless of whether it's powered via

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 126 of 210

https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/latest
file:///welcome-to-circuitpython/circuitpython-libraries

USB or the DC jack.

On QT Py M0, use the 5V pin.

If the power to the DotStars is greater than 5.5V you may have some difficulty driving some strips, in which

case you may need to lower the voltage to 4.5-5V or use a level shifter.

The Code

This example includes multiple visual effects. Copy and paste the code into code.py using your favorite

editor, and save the file.

"""CircuitPython Essentials DotStar example"""

import time

import adafruit_dotstar

import board

num_pixels = 30

pixels = adafruit_dotstar.DotStar(board.A1, board.A2, num_pixels, brightness=0.1,

auto_write=False)

def colorwheel(pos):

 # Input a value 0 to 255 to get a color value.

 # The colours are a transition r - g - b - back to r.

 if pos < 0 or pos > 255:

 return (0, 0, 0)

 if pos < 85:

 return (255 - pos * 3, pos * 3, 0)

 if pos < 170:

 pos -= 85

 return (0, 255 - pos * 3, pos * 3)

Do not use the VIN pin directly on Metro M0 Express or Metro M4 Express! The voltage can reach

9V and this can destroy your DotStars!

Note that the wire ordering on your DotStar strip or shape may not exactly match the diagram

above. Check the markings to verify which pin is DIN, CIN, 5V and GND

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 127 of 210

 return (0, 255 - pos * 3, pos * 3)

 pos -= 170

 return (pos * 3, 0, 255 - pos * 3)

def color_fill(color, wait):

 pixels.fill(color)

 pixels.show()

 time.sleep(wait)

def slice_alternating(wait):

 pixels[::2] = [RED] * (num_pixels // 2)

 pixels.show()

 time.sleep(wait)

 pixels[1::2] = [ORANGE] * (num_pixels // 2)

 pixels.show()

 time.sleep(wait)

 pixels[::2] = [YELLOW] * (num_pixels // 2)

 pixels.show()

 time.sleep(wait)

 pixels[1::2] = [GREEN] * (num_pixels // 2)

 pixels.show()

 time.sleep(wait)

 pixels[::2] = [TEAL] * (num_pixels // 2)

 pixels.show()

 time.sleep(wait)

 pixels[1::2] = [CYAN] * (num_pixels // 2)

 pixels.show()

 time.sleep(wait)

 pixels[::2] = [BLUE] * (num_pixels // 2)

 pixels.show()

 time.sleep(wait)

 pixels[1::2] = [PURPLE] * (num_pixels // 2)

 pixels.show()

 time.sleep(wait)

 pixels[::2] = [MAGENTA] * (num_pixels // 2)

 pixels.show()

 time.sleep(wait)

 pixels[1::2] = [WHITE] * (num_pixels // 2)

 pixels.show()

 time.sleep(wait)

def slice_rainbow(wait):

 pixels[::6] = [RED] * (num_pixels // 6)

 pixels.show()

 time.sleep(wait)

 pixels[1::6] = [ORANGE] * (num_pixels // 6)

 pixels.show()

 time.sleep(wait)

 pixels[2::6] = [YELLOW] * (num_pixels // 6)

 pixels.show()

 time.sleep(wait)

 pixels[3::6] = [GREEN] * (num_pixels // 6)

 pixels.show()

 time.sleep(wait)

 pixels[4::6] = [BLUE] * (num_pixels // 6)

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 128 of 210

 pixels[4::6] = [BLUE] * (num_pixels // 6)

 pixels.show()

 time.sleep(wait)

 pixels[5::6] = [PURPLE] * (num_pixels // 6)

 pixels.show()

 time.sleep(wait)

def rainbow_cycle(wait):

 for j in range(255):

 for i in range(num_pixels):

 rc_index = (i * 256 // num_pixels) + j

 pixels[i] = colorwheel(rc_index & 255)

 pixels.show()

 time.sleep(wait)

RED = (255, 0, 0)

YELLOW = (255, 150, 0)

ORANGE = (255, 40, 0)

GREEN = (0, 255, 0)

TEAL = (0, 255, 120)

CYAN = (0, 255, 255)

BLUE = (0, 0, 255)

PURPLE = (180, 0, 255)

MAGENTA = (255, 0, 20)

WHITE = (255, 255, 255)

while True:

 # Change this number to change how long it stays on each solid color.

 color_fill(RED, 0.5)

 color_fill(YELLOW, 0.5)

 color_fill(ORANGE, 0.5)

 color_fill(GREEN, 0.5)

 color_fill(TEAL, 0.5)

 color_fill(CYAN, 0.5)

 color_fill(BLUE, 0.5)

 color_fill(PURPLE, 0.5)

 color_fill(MAGENTA, 0.5)

 color_fill(WHITE, 0.5)

 # Increase or decrease this to speed up or slow down the animation.

 slice_alternating(0.1)

 color_fill(WHITE, 0.5)

 # Increase or decrease this to speed up or slow down the animation.

 slice_rainbow(0.1)

 time.sleep(0.5)

 # Increase this number to slow down the rainbow animation.

 rainbow_cycle(0)

We've chosen pins A1 and A2, but these are not SPI pins on all boards. DotStars respond faster

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 129 of 210

Create the LED

The first thing we'll do is create the LED object. The DotStar object has three required arguments and two

optional arguments. You are required to set the pin you're using for data, set the pin you'll be using for

clock, and provide the number of pixels you intend to use. You can optionally set brightness and

auto_write .

DotStars can be driven by any two pins . We've chosen A1 for clock and A2 for data. To set the pins,

include the pin names at the beginning of the object creation, in this case board.A1 and board.A2 .

To provide the number of pixels, assign the variable num_pixels to the number of pixels you'd like to use.

In this example, we're using a strip of 72 .

We've chosen to set brightness=0.1 , or 10%.

By default, auto_write=True , meaning any changes you make to your pixels will be sent automatically.

Since True is the default, if you use that setting, you don't need to include it in your LED object at all.

We've chosen to set auto_write=False . If you set auto_write=False , you must include pixels.show() each

time you'd like to send data to your pixels. This makes your code more complicated, but it can make your

LED animations faster!

DotStar Helpers

We've included a few helper functions to create the super fun visual effects found in this code.

First is wheel() which we just learned with the Internal RGB LED (https://adafru.it/Bel). Then we have

color_fill() which requires you to provide a color and the length of time you'd like it to be displayed. Next,

are slice_alternating() , slice_rainbow() , and rainbow_cycle() which require you to provide the amount of time

in seconds you'd between each step of the animation.

Last, we've included a list of variables for our colors. This makes it much easier if to reuse the colors

anywhere in the code, as well as add more colors for use in multiple places. Assigning and using RGB

colors is explained in this section of the CircuitPython Internal RGB LED page (https://adafru.it/Bel).

The two slice helpers utilise a nifty feature of the DotStar library that allows us to use math to light up LEDs

in repeating patterns. slice_alternating() first lights up the even number LEDs and then the odd number

LEDs and repeats this back and forth. slice_rainbow() lights up every sixth LED with one of the six rainbow

colors until the strip is filled. Both use our handy color variables. This slice code only works when the total

number of LEDs is divisible by the slice size, in our case 2 and 6. DotStars come in strips of 30, 60, 72, and

144, all of which are divisible by 2 and 6. In the event that you cut them into different sized strips, the code

in this example may not work without modification. However, as long as you provide a total number of

when using hardware SPI!

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 130 of 210

file:///circuitpython-essentials/circuitpython-internal-rgb-led
file:///circuitpython-essentials/circuitpython-internal-rgb-led#main-loop

LEDs that is divisible by the slices, the code will work.

Main Loop

Our main loop begins by calling color_fill() once for each color on our list and sets each to hold for 0.5

seconds. You can change this number to change how fast each color is displayed. Next, we call

slice_alternating(0.1) , which means there's a 0.1 second delay between each change in the animation.

Then, we fill the strip white to create a clean backdrop for the rainbow to display. Then, we call

slice_rainbow(0.1) , for a 0.1 second delay in the animation. Last we call rainbow_cycle(0) , which means it's

as fast as it can possibly be. Increase or decrease either of these numbers to speed up or slow down the

animations!

Note that the longer your strip of LEDs is, the longer it will take for the animations to complete.

Is it SPI?

We explained at the beginning of this section that the LEDs respond faster if you're using hardware SPI.

On some of the boards, there are HW SPI pins directly available in the form of MOSI and SCK. However,

hardware SPI is available on more than just those pins. But, how can you figure out which? Easy! We wrote

a handy script.

We chose pins A1 and A2 for our example code. To see if these are hardware SPI on the board you're

using, copy and paste the code into code.py using your favorite editor, and save the file. Then connect to

the serial console to see the results.

To check if other pin combinations have hardware SPI, change the pin names on the line reading: if

is_hardware_SPI(board.A1, board.A2): to the pins you want to use. Then, check the results in the serial

console. Super simple!

We have a ton more information on general purpose DotStar know-how at our DotStar UberGuide

https://learn.adafruit.com/adafruit-dotstar-leds

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 131 of 210

https://learn.adafruit.com/adafruit-dotstar-leds

"""CircuitPython Essentials Hardware SPI pin verification script"""

import board

import busio

def is_hardware_spi(clock_pin, data_pin):

 try:

 p = busio.SPI(clock_pin, data_pin)

 p.deinit()

 return True

 except ValueError:

 return False

Provide the two pins you intend to use.

if is_hardware_spi(board.A1, board.A2):

 print("This pin combination is hardware SPI!")

else:

 print("This pin combination isn't hardware SPI.")

Read the Docs

For a more in depth look at what dotstar can do, check out DotStar on Read the

Docs (https://adafru.it/C4d).

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 132 of 210

https://circuitpython.readthedocs.io/projects/dotstar/en/latest/

CircuitPython UART Serial

In addition to the USB-serial connection you use for the REPL, there is also a hardware UART you can use.

This is handy to talk to UART devices like GPSs, some sensors, or other microcontrollers!

This quick-start example shows how you can create a UART device for communicating with hardware

serial devices.

To use this example, you'll need something to generate the UART data. We've used a GPS! Note that the

GPS will give you UART data without getting a fix on your location. You can use this example right from

your desk! You'll have data to read, it simply won't include your actual location.

LED + to QT Py SCK

LED - to 470Ω resistor

470Ω resistor to QT Py GND

Copy and paste the code into code.py using your favorite editor, and save the file.

The QT Py M0 does not have a little red LED. Therefore, you must connect an external LED and

edit this example for it to work. Follow the wiring diagram and steps below to run this example on

QT Py M0.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 133 of 210

https://learn.adafruit.com//assets/102008

"""CircuitPython Essentials UART Serial example"""

import board

import busio

import digitalio

For most CircuitPython boards:

led = digitalio.DigitalInOut(board.LED)

For QT Py M0:

led = digitalio.DigitalInOut(board.SCK)

led.direction = digitalio.Direction.OUTPUT

uart = busio.UART(board.TX, board.RX, baudrate=9600)

while True:

 data = uart.read(32) # read up to 32 bytes

 # print(data) # this is a bytearray type

 if data is not None:

 led.value = True

 # convert bytearray to string

 data_string = ''.join([chr(b) for b in data])

 print(data_string, end="")

 led.value = False

For QT Py M0, you'll need to comment out led = DigitalInOut(board.LED) and uncomment led =

DigitalInOut(board.SCK) . The UART code remains the same.

The Code

First we create the UART object. We provide the pins we'd like to use, board.TX and board.RX , and we set

the baudrate=9600 . While these pins are labeled on most of the boards, be aware that RX and TX are not

labeled on Gemma, and are labeled on the bottom of Trinket. See the diagrams below for help with finding

the correct pins on your board.

Once the object is created you read data in with read(numbytes) where you can specify the max number of

bytes. It will return a byte array type object if anything was received already. Note it will always return

immediately because there is an internal buffer! So read as much data as you can 'digest'.

If there is no data available, read() will return None , so check for that before continuing.

The data that is returned is in a byte array, if you want to convert it to a string, you can use this handy line

of code which will run chr() on each byte:

Note: To "comment out" a line, put a # and a space before it. To "uncomment" a line, remove the #

+ space from the beginning of the line.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 134 of 210

datastr = ''.join([chr(b) for b in data]) # convert bytearray to string

Your results will look something like this:

Wire It Up

You'll need a couple of things to connect the GPS to your board.

For Gemma M0 and Circuit Playground Express, you can use use alligator clips to connect to the Flora

Ultimate GPS Module.

For Trinket M0, Feather M0 Express, Metro M0 Express and ItsyBitsy M0 Express, you'll need a

breadboard and jumper wires to connect to the Ultimate GPS Breakout.

We've included diagrams show you how to connect the GPS to your board. In these diagrams, the wire

colors match the same pins on each board.

The black wire connects between the ground pins.

The red wire connects between the power pins on the GPS and your board.

The blue wire connects from TX on the GPS to RX on your board.

The white wire connects from RX on the GPS to TX on your board.

For more information about the data you're reading and the Ultimate GPS, check out the Ultimate

GPS guide: https://learn.adafruit.com/adafruit-ultimate-gps

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 135 of 210

https://learn.adafruit.com/adafruit-ultimate-gps

Check out the list below for a diagram of your specific board!

Circuit Playground Express and Circuit Playground

Bluefruit

Connect 3.3v on your CPX to 3.3v on your GPS.

Connect GND on your CPX to GND on your GPS.

Connect RX/A6 on your CPX to TX on your GPS.

Connect TX/A7 on your CPX to RX on your GPS.

Trinket M0

Connect USB on the Trinket to VIN on the GPS.

Connect Gnd on the Trinket to GND on the GPS.

Connect D3 on the Trinket to TX on the GPS.

Connect D4 on the Trinket to RX on the GPS.

Gemma M0

Connect 3vo on the Gemma to 3.3v on the GPS.

Connect GND on the Gemma to GND on the GPS.

Connect A1/D2 on the Gemma to TX on the GPS.

Connect A2/D0 on the Gemma to RX on the GPS.

Watch out! A common mixup with UART serial is that RX on one board connects to TX on the

other! However, sometimes boards have RX labeled TX and vice versa. So, you'll want to start

with RX connected to TX, but if that doesn't work, try the other way around!

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 136 of 210

https://learn.adafruit.com//assets/52309
https://learn.adafruit.com//assets/52310
https://learn.adafruit.com//assets/52311

QT Py M0

Connect 3V on the QT Py to VIN on the GPS.

Connect GND on the QT Py to GND on the GPS.

Connect RX on the QT Py to TX on the GPS.

Connect TX on the QT Py to RX on the GPS.

Feather M0 Express and Feather M4 Express

Connect USB on the Feather to VIN on the GPS.

Connect GND on the Feather to GND on the GPS.

Connect RX on the Feather to TX on the GPS.

Connect TX on the Feather to RX on the GPS.

ItsyBitsy M0 Express and ItsyBitsy M4 Express

Connect USB on the ItsyBitsy to VIN on the GPS

Connect G on the ItsyBitsy to GND on the GPS.

Connect RX/0 on the ItsyBitsy to TX on the GPS.

Connect TX/1 on the ItsyBitsy to RX on the GPS.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 137 of 210

https://learn.adafruit.com//assets/97860
https://learn.adafruit.com//assets/52312
https://learn.adafruit.com//assets/52324

Metro M0 Express and Metro M4 Express

Connect 5V on the Metro to VIN on the GPS.

Connect GND on the Metro to GND on the GPS.

Connect RX/D0 on the Metro to TX on the GPS.

Connect TX/D1 on the Metro to RX on the GPS.

Where's my UART?

On the SAMD21, we have the flexibility of using a wide range of pins for UART. Compare this to some chips

like the ESP8266 with fixed UART pins. The good news is you can use many but not all pins. Given the

large number of SAMD boards we have, its impossible to guarantee anything other than the labeled 'TX'

and 'RX'. So, if you want some other setup, or multiple UARTs, how will you find those pins? Easy! We've

written a handy script.

All you need to do is copy this file to your board, rename it code.py, connect to the serial console and

check out the output! The results print out a nice handy list of RX and TX pin pairs that you can use.

These are the results from a Trinket M0, your output may vary and it might be very long. For more details

about UARTs and SERCOMs check out our detailed guide here (https://adafru.it/Ben)

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 138 of 210

https://learn.adafruit.com//assets/52328
file:///using-atsamd21-sercom-to-add-more-spi-i2c-serial-ports

"""CircuitPython Essentials UART possible pin-pair identifying script"""

import board

import busio

from microcontroller import Pin

def is_hardware_uart(tx, rx):

 try:

 p = busio.UART(tx, rx)

 p.deinit()

 return True

 except ValueError:

 return False

def get_unique_pins():

 exclude = ['NEOPIXEL', 'APA102_MOSI', 'APA102_SCK']

 pins = [pin for pin in [

 getattr(board, p) for p in dir(board) if p not in exclude]

 if isinstance(pin, Pin)]

 unique = []

 for p in pins:

 if p not in unique:

 unique.append(p)

 return unique

for tx_pin in get_unique_pins():

 for rx_pin in get_unique_pins():

 if rx_pin is tx_pin:

 continue

 if is_hardware_uart(tx_pin, rx_pin):

 print("RX pin:", rx_pin, "\t TX pin:", tx_pin)

Trinket M0: Create UART before I2C

On the Trinket M0 (only), if you are using both UART and I2C, you must create the UART object first, e.g.:

>>> import board

>>> uart = board.UART() # Uses pins 4 and 3 for TX and TX, baudrate 9600.

>>> i2c = board.I2C() # Uses pins 2 and 0 for SCL and SDA.

or alternatively,

Creating the I2C object first does not work:

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 139 of 210

>>> import board

>>> i2c = board.I2C() # Uses pins 2 and 0 for SCL and SDA.

>>> uart = board.UART() # Uses pins 4 and 3 for TX and TX, baudrate 9600.

Traceback (most recent call last):

File "", line 1, in

ValueError: Invalid pins

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 140 of 210

CircuitPython I2C

I2C is a 2-wire protocol for communicating with simple sensors and devices, meaning it uses two

connections for transmitting and receiving data. There are many I2C devices available and they're really

easy to use with CircuitPython. We have libraries available for many I2C devices in the library

bundle (https://adafru.it/uap). (If you don't see the sensor you're looking for, keep checking back, more are

being written all the time!)

In this section, we're going to do is learn how to scan the I2C bus for all connected devices. Then we're

going to learn how to interact with an I2C device.

We'll be using the Adafruit TSL2591 (https://adafru.it/dGE), a common, low-cost light sensor. While the

exact code we're running is specific to the TSL2591 the overall process is the same for just about any I2C

sensor or device.

You'll need the adafruit_tsl2591.mpy library and adafruit_bus_device library folder if you don't already

have it in your /lib folder! You can get it from the CircuitPython Library Bundle (https://adafru.it/y8E). If you

need help installing the library, check out the CircuitPython Libraries page (https://adafru.it/ABU).

These examples will use the TSL2591 lux sensor breakout. The first thing you'll want to do is get the

sensor connected so your board has I2C to talk to.

Wire It Up

You'll need a couple of things to connect the TSL2591 to your board. The TSL2591 comes with STEMMA

QT / QWIIC connectors on it, which makes it super simple to wire it up. No further soldering required!

For Gemma M0, Circuit Playground Express and Circuit Playground Bluefruit, you can use use the

STEMMA QT to alligator clips cable (https://adafru.it/KKa) to connect to the TSL2591.

For Trinket M0, Feather M0 and M4 Express, Metro M0 and M4 Express and ItsyBitsy M0 and M4 Express,

you'll need a breadboard and STEMMA QT to male jumper wires cable (https://adafru.it/FA-) to connect to

the TSL2591.

For QT Py M0, you'll need a STEMMA QT cable (https://adafru.it/FNS) to connect to the TSL2591.

We've included diagrams show you how to connect the TSL2591 to your board. In these diagrams, the

wire colors match the STEMMA QT cables and connect to the same pins on each board.

The black wire connects from GND on the TSL2591 to ground on your board.

The red wire connects from VIN on the TSL2591 to power on your board.

The yellow wire connects from SCL on the TSL2591 to SCL on your board.

The blue wire connects from SDA on the TSL2591 to SDA on your board.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 141 of 210

https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases
https://www.adafruit.com/product/1980
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/latest
file:///welcome-to-circuitpython/circuitpython-libraries
https://www.adafruit.com/product/4398
https://www.adafruit.com/product/4209
https://www.adafruit.com/product/4210

Check out the list below for a diagram of your specific board!

Circuit Playground Express and Circuit Playground

Bluefruit

Connect 3.3v on your CPX to 3.3v on your TSL2591.

Connect GND on your CPX to GND on your

TSL2591.

Connect SCL/A4 on your CPX to SCL on your

TSL2591.

Connect SDL/A5 on your CPX to SDA on your

TSL2591.

Trinket M0

Connect USB on the Trinket to VIN on the TSL2591.

Connect Gnd on the Trinket to GND on the TSL2591.

Connect D2 on the Trinket to SCL on the TSL2591.

Connect D0 on the Trinket to SDA on the TSL2591.

Gemma M0

Connect 3vo on the Gemma to 3V on the TSL2591.

Connect GND on the Gemma to GND on the

TSL2591.

Connect A1/D2 on the Gemma to SCL on the

TSL2591.

Connect A2/D0 on the Gemma to SDA on the

TSL2591.

Be aware that the Adafruit microcontroller boards do not have I2C pullup resistors built in! All of

the Adafruit breakouts do, but if you're building your own board or using a non-Adafruit breakout,

you must add 2.2K-10K ohm pullups on both SDA and SCL to the 3.3V.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 142 of 210

https://learn.adafruit.com//assets/97884
https://learn.adafruit.com//assets/97885
https://learn.adafruit.com//assets/97886

QT Py M0

If using the STEMMA QT cable:

Connect the STEMMA QT cable from the connector

on the QT Py to the connector on the TSL2591.

Alternatively, if using a breadboard:

Connect 3V on the QT Py to VIN on the TSL2591.

Connect GND on the QT Py to GND on the TSL2591.

Connect SCL on the QT Py to SCL on the TSL2591.

Connect SDA on the QT Py to SDA on the TSL2591.

Feather M0 Express and Feather M4 Express

Connect USB on the Feather to VIN on the TSL2591.

Connect GND on the Feather to GND on the

TSL2591.

Connect SCL on the Feather to SCL on the TSL2591.

Connect SDA on the Feather to SDA on the

TSL2591.

ItsyBitsy M0 Express and ItsyBitsy M4 Express

Connect USB on the ItsyBitsy to VIN on the TSL2591

Connect G on the ItsyBitsy to GND on the TSL2591.

Connect SCL on the ItsyBitsy to SCL on the

TSL2591.

Connect SDA on the ItsyBitsy to SDA on the

TSL2591.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 143 of 210

https://learn.adafruit.com//assets/97890
https://learn.adafruit.com//assets/97887
https://learn.adafruit.com//assets/97888

Metro M0 Express and Metro M4 Express

Connect 5V on the Metro to VIN on the TSL2591.

Connect GND on the Metro to GND on the TSL2591.

Connect SCL on the Metro to SCL on the TSL2591.

Connect SDA on the Metro to SDA on the TSL2591.

Find Your Sensor

The first thing you'll want to do after getting the sensor wired up, is make sure it's wired correctly. We're

going to do an I2C scan to see if the board is detected, and if it is, print out its I2C address.

Copy and paste the code into code.py using your favorite editor, and save the file.

"""CircuitPython Essentials I2C Scan example"""

If you run this and it seems to hang, try manually unlocking

your I2C bus from the REPL with

>>> import board

>>> board.I2C().unlock()

import time

import board

i2c = board.I2C()

while not i2c.try_lock():

 pass

try:

 while True:

 print("I2C addresses found:", [hex(device_address)

 for device_address in i2c.scan()])

 time.sleep(2)

finally: # unlock the i2c bus when ctrl-c'ing out of the loop

 i2c.unlock()

First we create the i2c object, using board.I2C() . This convenience routine creates and saves a busio.I2C

object using the default pins board.SCL and board.SDA . If the object has already been created, then the

existing object is returned. No matter how many times you call board.I2C() , it will return the same object.

This is called a singleton.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 144 of 210

https://learn.adafruit.com//assets/97889

To be able to scan it, we need to lock the I2C down so the only thing accessing it is the code. So next we

include a loop that waits until I2C is locked and then continues on to the scan function.

Last, we have the loop that runs the actual scan, i2c_scan() . Because I2C typically refers to addresses in

hex form, we've included this bit of code that formats the results into hex format: [hex(device_address) for

device_address in i2c.scan()] .

Open the serial console to see the results! The code prints out an array of addresses. We've connected

the TSL2591 which has a 7-bit I2C address of 0x29. The result for this sensor is I2C addresses found:

['0x29'] . If no addresses are returned, refer back to the wiring diagrams to make sure you've wired up your

sensor correctly.

I2C Sensor Data

Now we know for certain that our sensor is connected and ready to go. Let's find out how to get the data

from our sensor!

Copy and paste the code into code.py using your favorite editor, and save the file.

"""CircuitPython Essentials I2C sensor example using TSL2591"""

import time

import board

import adafruit_tsl2591

i2c = board.I2C()

Lock the I2C device before we try to scan

while not i2c.try_lock():

 pass

Print the addresses found once

print("I2C addresses found:", [hex(device_address) for device_address in i2c.scan()])

Unlock I2C now that we're done scanning.

i2c.unlock()

Create library object on our I2C port

tsl2591 = adafruit_tsl2591.TSL2591(i2c)

Use the object to print the sensor readings

while True:

 print("Lux:", tsl2591.lux)

 time.sleep(0.5)

This code begins the same way as the scan code. We've included the scan code so you have verification

that your sensor is wired up correctly and is detected. It prints the address once. After the scan, we unlock

I2C with i2c_unlock() so we can use the sensor for data.

We create our sensor object using the sensor library. We call it tsl2591 and provide it the i2c object.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 145 of 210

Then we have a simple loop that prints out the lux reading using the sensor object we created. We add a

time.sleep(1.0) , so it only prints once per second. Connect to the serial console to see the results. Try

shining a light on it to see the results change!

Where's my I2C?

On the SAMD21, SAMD51 and nRF52840, we have the flexibility of using a wide range of pins for I2C. On

the nRF52840, any pin can be used for I2C! Some chips, like the ESP8266, require using bitbangio, but

can also use any pins for I2C. There's some other chips that may have fixed I2C pin.

The good news is you can use many but not all pins. Given the large number of SAMD boards we have, its

impossible to guarantee anything other than the labeled 'SDA' and 'SCL'. So, if you want some other setup,

or multiple I2C interfaces, how will you find those pins? Easy! We've written a handy script.

All you need to do is copy this file to your board, rename it code.py, connect to the serial console and

check out the output! The results print out a nice handy list of SCL and SDA pin pairs that you can use.

These are the results from an ItsyBitsy M0 Express. Your output may vary and it might be very long. For

more details about I2C and SERCOMs, check out our detailed guide here (https://adafru.it/Ben).

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 146 of 210

file:///using-atsamd21-sercom-to-add-more-spi-i2c-serial-ports

"""CircuitPython Essentials I2C possible pin-pair identifying script"""

import board

import busio

from microcontroller import Pin

def is_hardware_I2C(scl, sda):

 try:

 p = busio.I2C(scl, sda)

 p.deinit()

 return True

 except ValueError:

 return False

 except RuntimeError:

 return True

def get_unique_pins():

 exclude = ['NEOPIXEL', 'APA102_MOSI', 'APA102_SCK']

 pins = [pin for pin in [

 getattr(board, p) for p in dir(board) if p not in exclude]

 if isinstance(pin, Pin)]

 unique = []

 for p in pins:

 if p not in unique:

 unique.append(p)

 return unique

for scl_pin in get_unique_pins():

 for sda_pin in get_unique_pins():

 if scl_pin is sda_pin:

 continue

 if is_hardware_I2C(scl_pin, sda_pin):

 print("SCL pin:", scl_pin, "\t SDA pin:", sda_pin)

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 147 of 210

CircuitPython HID Keyboard

One of the things we baked into CircuitPython is 'HID' control - Keyboard and Mouse capabilities. This

means a Circuit Playground Express can act like a keyboard device and press keys, or a mouse and have it

move the mouse around and press buttons. This is really handy because even if you cannot adapt your

software to work with hardware, there's almost always a keyboard interface - so if you want to have a

capacitive touch interface for a game, say, then keyboard emulation can often get you going really fast!

You'll need to copy the adafruit_hid module from the library bundle which include Keyboard, Keycode and

Mouse support (https://adafru.it/ENC)

Then try running this example code which will set the Circuit Playground Express Button_A and Button_B

as HID keyboard "keys".

Circuit Playground HID Keyboard

import time

import board

import usb_hid

from adafruit_hid.keyboard import Keyboard

from adafruit_hid.keyboard_layout_us import KeyboardLayoutUS

Though the following example uses the Circuit Playground Express to demonstrate, the code

works exactly the same way with the Circuit Playground Bluefruit. Simply copy the code and

follow along with your Circuit Playground Bluefruit!

This example has been updated for version 4+ of the CircuitPython HID library. On the

CircuitPlayground Express this library is built into CircuitPython. So, please use the latest version

of CircuitPython as well. (At least 5.0.0-beta.3)

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 148 of 210

https://circuitpython.org/libraries

from adafruit_hid.keyboard_layout_us import KeyboardLayoutUS

from adafruit_hid.keycode import Keycode

from digitalio import DigitalInOut, Direction, Pull

A simple neat keyboard demo in CircuitPython

The button pins we'll use, each will have an internal pulldown

buttonpins = [board.BUTTON_A, board.BUTTON_B]

our array of button objects

buttons = []

The keycode sent for each button, will be paired with a control key

buttonkeys = [Keycode.A, "Hello World!\n"]

controlkey = Keycode.SHIFT

the keyboard object!

sleep for a bit to avoid a race condition on some systems

time.sleep(1)

kbd = Keyboard(usb_hid.devices)

we're americans :)

layout = KeyboardLayoutUS(kbd)

make all pin objects, make them inputs with pulldowns

for pin in buttonpins:

 button = DigitalInOut(pin)

 button.direction = Direction.INPUT

 button.pull = Pull.DOWN

 buttons.append(button)

led = DigitalInOut(board.D13)

led.direction = Direction.OUTPUT

print("Waiting for button presses")

while True:

 # check each button

 # when pressed, the LED will light up,

 # when released, the keycode or string will be sent

 # this prevents rapid-fire repeats!

 for button in buttons:

 if button.value: # pressed?

 i = buttons.index(button)

 print("Button #%d Pressed" % i)

 # turn on the LED

 led.value = True

 while button.value:

 pass # wait for it to be released!

 # type the keycode or string

 k = buttonkeys[i] # get the corresponding keycode or string

 if isinstance(k, str):

 layout.write(k)

 else:

 kbd.press(controlkey, k) # press...

 kbd.release_all() # release!

 # turn off the LED

 led.value = False

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 149 of 210

 led.value = False

 time.sleep(0.01)

Press Button A or Button B to have the keypresses sent.

The Keyboard and Layout object are created, we only have US right now (if you make other layouts please

submit a GitHub pull request!)

the keyboard object!

kbd = Keyboard(usb_hid.devices)

we're americans :)

layout = KeyboardLayoutUS(kbd)

Then you can send key-down's with kbd.press(keycode, ...) You can have up to 6 keycode presses at once.

Note that these are keycodes so if you want to send a capital A, you need both SHIFT and A. Don't forget

to call kbd.release_all() soon after or you'll have a stuck key which is really annoying!

You can also send full strings, with layout.write("Hello World!\n") - it will use the layout to determine the

keycodes to press.

For more detail check out the documentation at

https://circuitpython.readthedocs.io/projects/hid/en/latest/

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 150 of 210

https://circuitpython.readthedocs.io/projects/hid/en/latest/

CircuitPython CPU Temp

There is a CPU temperature sensor built into every ATSAMD21, ATSAMD51 and nRF52840 chips.

CircuitPython makes it really simple to read the data from this sensor. This works on the Adafruit

CircuitPython boards it's built into the microcontroller used for these boards.

The data is read using two simple commands. We're going to enter them in the REPL. Plug in your board,

connect to the serial console (https://adafru.it/Bec), and enter the REPL (https://adafru.it/Awz). Then, enter

the following commands into the REPL:

import microcontroller

microcontroller.cpu.temperature

That's it! You've printed the temperature in Celsius to the REPL. Note that it's not exactly the ambient

temperature and it's not super precise. But it's close!

If you'd like to print it out in Fahrenheit, use this simple formula: Celsius * (9/5) + 32. It's super easy to do

math using CircuitPython. Check it out!

Note that the temperature sensor built into the nRF52840 has a resolution of 0.25 degrees

Celsius, so any temperature you print out will be in 0.25 degree increments.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 151 of 210

file:///welcome-to-circuitpython/kattni-connecting-to-the-serial-console
file:///welcome-to-circuitpython/the-repl

CircuitPython Storage

CircuitPython-compatible microcontrollers show up as a CIRCUITPY drive when plugged into your

computer, allowing you to edit code directly on the board. Perhaps you've wondered whether or not you

can write data from CircuitPython directly to the board to act as a data logger. The answer is yes!

The storage module in CircuitPython enables you to write code that allows CircuitPython to write data to

the CIRCUITPY drive. This process requires you to include a boot.py file on your CIRCUITPY drive, along

side your code.py file.

The boot.py file is special - the code within it is executed when CircuitPython starts up, either from a hard

reset or powering up the board. It is not run on soft reset, for example, if you reload the board from the

serial console or the REPL. This is in contrast to the code within code.py, which is executed after

CircuitPython is already running.

The CIRCUITPY drive is typically writable by your computer; this is what allows you to edit your code

directly on the board. The reason you need a boot.py file is that you have to set the filesystem to be read-

only by your computer to allow it to be writable by CircuitPython. This is because CircuitPython cannot

write to the filesystem at the same time as your computer. Doing so can lead to filesystem corruption and

loss of all content on the drive, so CircuitPython is designed to only allow one at at time.

Save the following as boot.py on your CIRCUITPY drive.

Click the Download Project Bundle button, open the resulting zip file, and copy the boot.py file to

your CIRCUITPY drive.

You can only have either your computer edit the CIRCUITPY drive files, or CircuitPython. You

cannot have both write to the drive at the same time. (Bad Things Will Happen so we do not allow

you to do it!)

The filesystem will NOT automatically be set to read-only on creation of this file! You'll still be able

to edit files on CIRCUITPY after saving this boot.py.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 152 of 210

"""CircuitPython Essentials Storage logging boot.py file"""

import board

import digitalio

import storage

For Gemma M0, Trinket M0, Metro M0/M4 Express, ItsyBitsy M0/M4 Express

switch = digitalio.DigitalInOut(board.D2)

For Feather M0/M4 Express

switch = digitalio.DigitalInOut(board.D5)

For Circuit Playground Express, Circuit Playground Bluefruit

switch = digitalio.DigitalInOut(board.D7)

switch.direction = digitalio.Direction.INPUT

switch.pull = digitalio.Pull.UP

If the switch pin is connected to ground CircuitPython can write to the drive

storage.remount("/", switch.value)

The storage.remount() command has a readonly keyword argument. This argument refers to the

read/write state of CircuitPython. It does NOT refer to the read/write state of your computer.

When the physical pin is connected to ground, it returns False . The readonly argument in boot.py is set to

the value of the pin. When the value=True , the CIRCUITPY drive is read-only to CircuitPython (and writable

by your computer). When the value=False , the CIRCUITPY drive is writable by CircuitPython (an read-

only by your computer).

For Gemma M0, Trinket M0, Metro M0 Express, Metro M4 Express, ItsyBitsy M0 Express and ItsyBitsy

M4 Express, no changes to the initial code are needed.

For Feather M0 Express and Feather M4 Express , comment out switch = digitalio.DigitalInOut(board.D2) , and

uncomment switch = digitalio.DigitalInOut(board.D5) .

For Circuit Playground Express and Circuit Playground Bluefruit , comment out switch =

digitalio.DigitalInOut(board.D2) , and uncomment switch = digitalio.DigitalInOut(board.D7) . Remember, D7 is the

onboard slide switch, so there's no extra wires or alligator clips needed.

On the Circuit Playground Express or Circuit Playground Bluefruit, the switch is in the right position (closer

to the ear icon on the silkscreen) it returns False , and the CIRCUITPY drive will be writable by

CircuitPython. If the switch is in the left position (closer to the music icon on the silkscreen), it returns True ,

and the CIRCUITPY drive will be writable by your computer.

Remember: To "comment out" a line, put a # and a space before it. To "uncomment" a line,

remove the # + space from the beginning of the line.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 153 of 210

The following is your new code.py. Copy and paste the code into code.py using your favorite editor.

"""CircuitPython Essentials Storage logging example"""

import time

import board

import digitalio

import microcontroller

For most CircuitPython boards:

led = digitalio.DigitalInOut(board.LED)

For QT Py M0:

led = digitalio.DigitalInOut(board.SCK)

led.switch_to_output()

try:

 with open("/temperature.txt", "a") as fp:

 while True:

 temp = microcontroller.cpu.temperature

 # do the C-to-F conversion here if you would like

 fp.write('{0:f}\n'.format(temp))

 fp.flush()

 led.value = not led.value

 time.sleep(1)

except OSError as e: # Typically when the filesystem isn't writeable...

 delay = 0.5 # ...blink the LED every half second.

 if e.args[0] == 28: # If the file system is full...

 delay = 0.25 # ...blink the LED faster!

 while True:

 led.value = not led.value

 time.sleep(delay)

Logging the Temperature

The way boot.py works is by checking to see if the pin you specified in the switch setup in your code is

connected to a ground pin. If it is, it changes the read-write state of the file system, so the CircuitPython

core can begin logging the temperature to the board.

For help finding the correct pins, see the wiring diagrams and information in the Find the Pins section of

the CircuitPython Digital In & Out guide (https://adafru.it/Bes). Instead of wiring up a switch, however, you'll

be connecting the pin directly to ground with alligator clips or jumper wires.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 154 of 210

file:///adafruit-trinket-m0-circuitpython-arduino/circuitpython-digital-in-out#find-the-pins

Once you copied the files to your board, eject it and unplug it from your computer. If you're using your

Circuit Playground Express, all you have to do is make sure the switch is to the right. Otherwise, use

alligator clips or jumper wires to connect the chosen pin to ground. Then, plug your board back into your

computer.

You will not be able to edit code on your CIRCUITPY drive anymore!

The red LED should blink once a second and you will see a new temperature.txt file on CIRCUITPY.

boot.py only runs on first boot of the device, not if you re-load the serial console with ctrl+D or if

you save a file. You must EJECT the USB drive, then physically press the reset button!

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 155 of 210

This file gets updated once per second, but you won't see data come in live. Instead, when you're ready to

grab the data, eject and unplug your board. For CPX, move the switch to the left, otherwise remove the

wire connecting the pin to ground. Now it will be possible for you to write to the filesystem from your

computer again, but it will not be logging data.

We have a more detailed guide on this project available here: CPU Temperature Logging with

CircuitPython. (https://adafru.it/zuF) If you'd like more details, check it out!

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 156 of 210

file:///cpu-temperature-logging-with-circuit-python

Playground Temperature

But wait! There's more -- the Circuit Playground Express can also tell the temperature!

How, you ask? With a build in thermistor. This little sensor is a thermally sensitive resistor, meaning it's

resistance changes based on temperature.

We can access its readings in CircuitPython by importing the adafruit_thermistor library, and then using

the board.TEMPERATURE pin to read the thermistor value.

Copy the code below in to a new file, then save it onto the board as main.py. Then, open up a REPL

session and you'll see the temperature readings in both Celsius and Fahrenheit.

Though the following example uses the Circuit Playground Express to demonstrate, the code

works exactly the same way with the Circuit Playground Bluefruit. Simply copy the code and

follow along with your Circuit Playground Bluefruit!

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 157 of 210

Circuit Playground Temperature

Reads the on-board temperature sensor and prints the value

import time

import adafruit_thermistor

import board

thermistor = adafruit_thermistor.Thermistor(

 board.TEMPERATURE, 10000, 10000, 25, 3950)

while True:

 temp_c = thermistor.temperature

 temp_f = thermistor.temperature * 9 / 5 + 32

 print("Temperature is: %f C and %f F" % (temp_c, temp_f))

 time.sleep(0.25)

Try placing your finger over the sensor (you'll see a thermometer icon on the board) and watch the

readings change.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 158 of 210

Playground Light Sensor

The Circuit Playground Express can see you! OK, not really. That would be creepy.

But, it can sense light and dark, as well as colors and even your pulse!!

The Light Sensor in the upper left of the board (look for the eye icon) is a phototransistor. Here's how to

use it as a light sensor:

Though the following example uses the Circuit Playground Express to demonstrate, the code

works exactly the same way with the Circuit Playground Bluefruit. Simply copy the code and

follow along with your Circuit Playground Bluefruit!

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 159 of 210

Circuit Playground Light Sensor

Reads the on-board light sensor and graphs the brightness with NeoPixels

import time

import board

import neopixel

import analogio

import simpleio

pixels = neopixel.NeoPixel(board.NEOPIXEL, 10, brightness=.05, auto_write=False)

pixels.fill((0, 0, 0))

pixels.show()

light = analogio.AnalogIn(board.LIGHT)

while True:

 # light value remapped to pixel position

 peak = simpleio.map_range(light.value, 2000, 62000, 0, 9)

 print(light.value)

 print(int(peak))

 for i in range(0, 9, 1):

 if i <= peak:

 pixels[i] = (0, 255, 0)

 else:

 pixels[i] = (0, 0, 0)

 pixels.show()

 time.sleep(0.01)

Copy and paste that code into a text editor and then save it to your Circuit Playground Express as code.py

The code reads the light sensor and then lights up the NeoPixels like a bar graph depending on the light

level. Try waving your hand over it, or shining it with a flashlight to see it change!

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 160 of 210

Playground Drum Machine

A wise man once said, "Nothing sounds better than an Eight-O-Eight."

(That wise man was Adam Horovitz of the Beastie Boys.)

The 808 to which Ad-Rock was referring is the Roland TR-808 drum machine. Let's build a little Circuit

Playground Express tribute to the venerable 808! Instead of a full-blown drum pattern sequencer, we'll just

focus on the machine's pads which are used for finger drumming to play back sampled drum sounds.

We can use the capacitive touch pads on the Circuit Playground Express as triggers, and small .wav files

for our drum sounds!

First, download the .zip file below, which contains all of the drum samples we'll be using. Save the file to

your desktop or somewhere else easy to find, and then unzip it.

https://adafru.it/zHc

You can plug in your Circuit Playground Express, and then drag the drum files onto it. It shows up as the

CIRCUITPY drive.

Though the following example uses the Circuit Playground Express to demonstrate, the code

works exactly the same way with the Circuit Playground Bluefruit. Simply copy the code and

follow along with your Circuit Playground Bluefruit!

https://adafru.it/zHc

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 161 of 210

https://cdn-learn.adafruit.com/assets/assets/000/047/298/original/drumSamples.zip?1507938887

Now, it's time to code the Circuit Playground Express! Copy the code shown below, and then paste it into

your code editor of choice. Save the file as code.py on your CIRCUITPY drive.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 162 of 210

Circuit Playground 808 Drum machine

import time

import board

import touchio

import digitalio

try:

 from audiocore import WaveFile

except ImportError:

 from audioio import WaveFile

try:

 from audioio import AudioOut

except ImportError:

 try:

 from audiopwmio import PWMAudioOut as AudioOut

 except ImportError:

 pass # not always supported by every board!

bpm = 120 # Beats per minute, change this to suit your tempo

Enable the speaker

speaker_enable = digitalio.DigitalInOut(board.SPEAKER_ENABLE)

speaker_enable.direction = digitalio.Direction.OUTPUT

speaker_enable.value = True

Make the input capacitive touchpads

capPins = (board.A1, board.A2, board.A3, board.A4, board.A5,

 board.A6, board.TX)

touchPad = []

for i in range(7):

 touchPad.append(touchio.TouchIn(capPins[i]))

The seven files assigned to the touchpads

audiofiles = ["bd_tek.wav", "elec_hi_snare.wav", "elec_cymbal.wav",

 "elec_blip2.wav", "bd_zome.wav", "bass_hit_c.wav",

 "drum_cowbell.wav"]

audio = AudioOut(board.SPEAKER)

def play_file(filename):

 print("playing file " + filename)

 file = open(filename, "rb")

 wave = WaveFile(file)

 audio.play(wave)

 time.sleep(bpm / 960) # Sixteenth note delay

while True:

 for i in range(7):

 if touchPad[i].value:

 play_file(audiofiles[i])

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 163 of 210

Try it out! When you tap the capacitive pads, the corresponding drum sample is triggered!!

Things are a bit crammed, admittedly, so you can try adding foil, copper tape, alligator clips, etc. in order to

increase the surface area and physical space you have for your drumming!

If you want to use your own sound files, you can! Record, sample, remix, or simply download files from a

sound file sight, such as freesample.org. Then, to make sure you have the files converted to the proper

specifications, check out this guide here (https://adafru.it/s8f) that'll show you how! Spoiler alert:

you'll need to make a small, 22Khz (or lower), 16 bit PCM, mono .wav file!

Want to listen to your Drum Machine at body movin' volumes? No problem! Hook up an

1/8" (https://adafru.it/Bf3) or 1/4" phono output (https://adafru.it/Bf4) to the GND and A0/Audio pads, then

plug in to an amp!! I tried it on a small guitar amp and it sounds great.

Capacitance is calibrated at startup, so you may need to reset the board after attaching leads to

the pads!

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 164 of 210

file:///adafruit-wave-shield-audio-shield-for-arduino/convert-files
https://www.adafruit.com/product/2790
https://www.adafruit.com/product/2911

Playground Sound Meter

Use the microphone on your Circuit Playground Express to measure sound levels and display them on a

VU-meter-like display!

The program is below. There are many settings that you can change to make the readings more or less

sensitive and the display more or less jumpy. Try changing CURVE to be 4 or 1 or 10 or -2 and see what

happens.

The program samples audio for a short time and the computes the energy in the sample (corresponding to

volume) using a Root-Mean-Square (https://adafru.it/Bf5) computation (RMS). You could try varying the

sample size if you like.

The log_scale() function varies the number of NeoPixels lit in an exponential way, because sound levels

can vary by many factors of 10 between loud and soft. Try varying how it's computed to see what happens.

The program takes one sample when it first starts to set a "quiet" sound level. If that doesn't work for you,

set input_floor to be a fixed number. If the meter seems too sensitive, try changing input_ceiling = input_floor

+ 500 to be input_ceiling = input_floor + 2000 or higher. Or go the other way.

You can also change the colors. Try different ways of computing volume_color(i) for more of a rainbow

effect, or make it a constant if you don't like changing colors.

The MIT License (MIT)

#

Copyright (c) 2017 Dan Halbert for Adafruit Industries

Copyright (c) 2017 Kattni Rembor, Tony DiCola for Adafruit Industries

#

Permission is hereby granted, free of charge, to any person obtaining a copy

of this software and associated documentation files (the "Software"), to deal

Though the following example uses the Circuit Playground Express to demonstrate, the code

works exactly the same way with the Circuit Playground Bluefruit. Simply copy the code and

follow along with your Circuit Playground Bluefruit!

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 165 of 210

https://en.wikipedia.org/wiki/Root_mean_square

of this software and associated documentation files (the "Software"), to deal

in the Software without restriction, including without limitation the rights

to use, copy, modify, merge, publish, distribute, sublicense, and/or sell

copies of the Software, and to permit persons to whom the Software is

furnished to do so, subject to the following conditions:

#

The above copyright notice and this permission notice shall be included in

all copies or substantial portions of the Software.

#

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN

THE SOFTWARE.

Circuit Playground Sound Meter

import array

import math

import audiobusio

import board

import neopixel

Color of the peak pixel.

PEAK_COLOR = (100, 0, 255)

Number of total pixels - 10 build into Circuit Playground

NUM_PIXELS = 10

Exponential scaling factor.

Should probably be in range -10 .. 10 to be reasonable.

CURVE = 2

SCALE_EXPONENT = math.pow(10, CURVE * -0.1)

Number of samples to read at once.

NUM_SAMPLES = 160

Restrict value to be between floor and ceiling.

def constrain(value, floor, ceiling):

 return max(floor, min(value, ceiling))

Scale input_value between output_min and output_max, exponentially.

def log_scale(input_value, input_min, input_max, output_min, output_max):

 normalized_input_value = (input_value - input_min) / \

 (input_max - input_min)

 return output_min + \

 math.pow(normalized_input_value, SCALE_EXPONENT) \

 * (output_max - output_min)

Remove DC bias before computing RMS.

def normalized_rms(values):

 minbuf = int(mean(values))

 samples_sum = sum(

 float(sample - minbuf) * (sample - minbuf)

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 166 of 210

 float(sample - minbuf) * (sample - minbuf)

 for sample in values

)

 return math.sqrt(samples_sum / len(values))

def mean(values):

 return sum(values) / len(values)

def volume_color(volume):

 return 200, volume * (255 // NUM_PIXELS), 0

Main program

Set up NeoPixels and turn them all off.

pixels = neopixel.NeoPixel(board.NEOPIXEL, NUM_PIXELS, brightness=0.1, auto_write=False)

pixels.fill(0)

pixels.show()

mic = audiobusio.PDMIn(board.MICROPHONE_CLOCK, board.MICROPHONE_DATA,

 sample_rate=16000, bit_depth=16)

Record an initial sample to calibrate. Assume it's quiet when we start.

samples = array.array('H', [0] * NUM_SAMPLES)

mic.record(samples, len(samples))

Set lowest level to expect, plus a little.

input_floor = normalized_rms(samples) + 10

OR: used a fixed floor

input_floor = 50

You might want to print the input_floor to help adjust other values.

print(input_floor)

Corresponds to sensitivity: lower means more pixels light up with lower sound

Adjust this as you see fit.

input_ceiling = input_floor + 500

peak = 0

while True:

 mic.record(samples, len(samples))

 magnitude = normalized_rms(samples)

 # You might want to print this to see the values.

 # print(magnitude)

 # Compute scaled logarithmic reading in the range 0 to NUM_PIXELS

 c = log_scale(constrain(magnitude, input_floor, input_ceiling),

 input_floor, input_ceiling, 0, NUM_PIXELS)

 # Light up pixels that are below the scaled and interpolated magnitude.

 pixels.fill(0)

 for i in range(NUM_PIXELS):

 if i < c:

 pixels[i] = volume_color(i)

 # Light up the peak pixel and animate it slowly dropping.

 if c >= peak:

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 167 of 210

 if c >= peak:

 peak = min(c, NUM_PIXELS - 1)

 elif peak > 0:

 peak = peak - 1

 if peak > 0:

 pixels[int(peak)] = PEAK_COLOR

 pixels.show()

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 168 of 210

Playground Color Picker

You can use your Circuit Playground Bluefruit with the Adafruit Bluefruit LE Connect (https://adafru.it/GcN)

mobile app to control the NeoPixel RGB LEDs on the CPB!

The Code

Plug your Circuit Playground Bluefruit into your computer, and save the following as code.py on the

CIRCUITPY drive:

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 169 of 210

https://learn.adafruit.com/adafruit-circuit-playground-bluefruit/bluefruit-le-connect

SPDX-FileCopyrightText: 2020 ladyada for Adafruit Industries

SPDX-License-Identifier: MIT

CircuitPython NeoPixel Color Picker Example

import board

import neopixel

from adafruit_bluefruit_connect.packet import Packet

from adafruit_bluefruit_connect.color_packet import ColorPacket

from adafruit_ble import BLERadio

from adafruit_ble.advertising.standard import ProvideServicesAdvertisement

from adafruit_ble.services.nordic import UARTService

ble = BLERadio()

uart_service = UARTService()

advertisement = ProvideServicesAdvertisement(uart_service)

pixels = neopixel.NeoPixel(board.NEOPIXEL, 10, brightness=0.1)

while True:

 # Advertise when not connected.

 ble.start_advertising(advertisement)

 while not ble.connected:

 pass

 ble.stop_advertising()

 while ble.connected:

 if uart_service.in_waiting:

 packet = Packet.from_stream(uart_service)

 if isinstance(packet, ColorPacket):

 print(packet.color)

 pixels.fill(packet.color)

Connect to your board through the Adafruit Bluefruit LE Connect mobile app. If you need assistance,

check out this page on installing and using the app (https://adafru.it/GcN).

Once connected, from the device menu, tap on Controller, then Color Picker. Choose a color from the dial

and tap Select (Android) or Send selected color (iOS). The LEDs will light up in the color you chose!

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 170 of 210

https://learn.adafruit.com/adafruit-circuit-playground-bluefruit/bluefruit-le-connect

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 171 of 210

Playground Bluetooth Plotter

The Circuit Playground Bluefruit has a built in light sensor that returns a light value and a temperature

sensor that returns the temperature in degrees Celsius. The Adafruit Bluefruit LE Connect mobile app has

a built in plotter function that you can use to plot any numerical information. This page will show you how

to plot the light and temperature data from the Circuit Playground Bluefruit in the Bluefruit LE Connect app!

The Code

Plug your Circuit Playground Bluefruit into your computer, and save the following as code.py on the

CIRCUITPY drive:

SPDX-FileCopyrightText: 2020 ladyada for Adafruit Industries

SPDX-License-Identifier: MIT

CircuitPython Bluefruit LE Connect Plotter Example

import time

import board

import analogio

import adafruit_thermistor

from adafruit_ble import BLERadio

from adafruit_ble.advertising.standard import ProvideServicesAdvertisement

from adafruit_ble.services.nordic import UARTService

ble = BLERadio()

uart_server = UARTService()

advertisement = ProvideServicesAdvertisement(uart_server)

thermistor = adafruit_thermistor.Thermistor(board.TEMPERATURE, 10000, 10000, 25, 3950)

light = analogio.AnalogIn(board.LIGHT)

def scale(value):

 """Scale the light sensor values from 0-65535 (AnalogIn range)

 to 0-50 (arbitrarily chosen to plot well with temperature)"""

 return value / 65535 * 50

while True:

 # Advertise when not connected.

 ble.start_advertising(advertisement)

 while not ble.connected:

 pass

 ble.stop_advertising()

 while ble.connected:

 print((scale(light.value), thermistor.temperature))

 uart_server.write("{},{}\n".format(scale(light.value), thermistor.temperature))

 time.sleep(0.1)

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 172 of 210

Connect to your board through the Adafruit Bluefruit LE Connect mobile app. If you need assistance,

check out the Bluefruit LE Connect Basics page in the Getting Started guide (https://adafru.it/F-x).

Once connected, tap Plotter.

Your data should start plotting automatically. Try shining a light towards your Circuit Playground Bluefruit

to see the light value line change. Try placing your finger over the thermistor (towards the top-right,

labeled A9, next to the picture of a thermometer) to see the temperature value line change.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 173 of 210

https://learn.adafruit.com/circuitpython-nrf52840/bluefruit-le-connect-basics

That's all there is to plotting numerical data with the Circuit Playground Bluefruit and the Adafruit Bluefruit

LE Connect mobile app!

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 174 of 210

Arduino Support Setup

You can install the Adafruit Bluefruit nRF52 BSP (Board Support Package) in two steps:

1. BSP Installation

Recommended: Installing the BSP via the Board Manager

Download and install the Arduino IDE (https://adafru.it/fvm) (At least v1.8)

Start the Arduino IDE

Go into Preferences

Add https://www.adafruit.com/package_adafruit_index.json as an 'Additional Board Manager URL ' (see

image below)

nRF52 support requires at least Arduino IDE version 1.8.6! Please make sure you have an up to

date version before proceeding with this guide!

Please consult the FAQ section at the bottom of this page if you run into any problems installing

or using this BSP!

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 175 of 210

https://www.arduino.cc/en/Main/Software

Restart the Arduino IDE

Open the Boards Manager option from the Tools -> Board menu and install 'Adafruit nRF52 by

Adafruit' (see image below)

It will take up to a few minutes to finish installing the cross-compiling toolchain and tools associated with

this BSP.

The delay during the installation stage shown in the image below is normal , please be patient and let the

installation terminate normally:

Once the BSP is installed, select

Adafruit Bluefruit nRF52832 Feather (for the nRF52 Feather)

Adafruit Bluefruit nRF52840 Feather Express (for the nRF52840 Feather)

Adafruit ItsyBitsy nRF52840 (for the Itsy '850)

Adafruit Circuit Playground Bluefruit (for the CPB)

etc...

from the Tools -> Board menu, which will update your system config to use the right compiler and settings

for the nRF52:

2. LINUX ONLY: adafruit-nrfutil Tool Installation

adafruit-nrfutil (https://adafru.it/Cau) is a modified version of Nordic's nrfutil (https://adafru.it/vaG), which is

used to flash boards using the built in serial bootloader. It is originally written for python2, but have been

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 176 of 210

https://github.com/adafruit/Adafruit_nRF52_nrfutil
https://github.com/NordicSemiconductor/pc-nrfutil

migrated to python3 and renamed to adafruit-nrfutil since BSP version 0.8.5.

Install python3 if it is not installed in your system already

$ sudo apt-get install python3

Then run the following command to install the tool from PyPi

$ pip3 install --user adafruit-nrfutil

Add pip3 installation dir to your PATH if it is not added already. Make sure adafruit-nrfutil can be executed

in terminal by running

$ adafruit-nrfutil version

adafruit-nrfutil version 0.5.3.post12

3. Update the bootloader (nRF52832 ONLY)

To keep up with Nordic's SoftDevice advances, you will likely need to update your bootloader if you are

using the original nRF52832 based Bluefruit nRF52 Feather boards.

Follow this link for instructions on how to do that

https://adafru.it/Dsx

Advanced Option: Manually Install the BSP via 'git'

If you wish to do any development against the core codebase (generate pull requests, etc.), you can also

optionally install the Adafruit nRF52 BSP manually using 'git', as decribed below:

Adafruit nRF52 BSP via git (for core development and PRs only)

This step is only required on Linux, pre-built binaries of adafruit-nrfutil for Windows and MacOS

are already included in the BSP. That should work out of the box for most setups.

This step ISN'T required for the newer nRF52840 Feather Express, which has a different

bootloader entirely!

https://adafru.it/Dsx

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 177 of 210

https://learn.adafruit.com/bluefruit-nrf52-feather-learning-guide/updating-the-bootloader

1. Install BSP via Board Manager as above to install compiler & tools.

2. Delete the core folder nrf52 installed by Board Manager in Adruino15, depending on your OS. It

could be

macOS: ~/Library/Arduino15/packages/adafruit/hardware/nrf52

Linux: ~/.arduino15/packages/adafruit/hardware/nrf52

Windows: %APPDATA%\Local\Arduino15\packages\adafruit\hardware\nrf52

3. Go to the sketchbook folder on your command line, which should be one of the following:

macOS: ~/Documents/Arduino

Linux: ~/Arduino

Windows: ~/Documents/Arduino

4. Create a folder named hardware/Adafruit , if it does not exist, and change directories into it.

5. Clone the Adafruit_nRF52_Arduino (https://adafru.it/vaF) repo in the folder described in step 2:

git clone --recurse-submodules git@github.com:adafruit/Adafruit_nRF52_Arduino.git

6. This should result in a final folder name like

~/Documents/Arduino/hardware/Adafruit/Adafruit_nRF52_Arduino (macOS).

7. Restart the Arduino IDE

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 178 of 210

https://github.com/adafruit/Adafruit_nRF52_Arduino

Arduino BLE Examples

There are numerous examples available for the Bluefruit nRF52/nRF52840 Feathers in the Examples

menu of the nRF52 BSP, and these are always up to date. You're first stop looking for example code

should be there:

Example Source Code

The latest example source code is always available and visible on Github, and the public git repository

should be considered the definitive source of example code for this board.

https://adafru.it/vaK

Documented Examples

To help explain some common use cases for the nRF52 BLE API, feel free to consult the example

documentation in this section of the learning guide:

Advertising: Beacon - Shows how to use the BLEBeacon helper class to configure your Bleufruit

nRF52 Feather as a beacon

BLE UART: Controller - Shows how to use the Controller utility in our Bluefruit LE Connect apps to

send basic data between your peripheral and your phone or tablet.

Custom: HRM - Shows how to defined and work with a custom GATT Service and Characteristic,

using the officially adopted Heart Rate Monitor (HRM) service as an example.

BLE Pin I/O (StandardFirmataBLE) Shows how to control Pin I/O of nRF52 with Firmata protocol

https://adafru.it/vaK

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 179 of 210

https://github.com/adafruit/Adafruit_nRF52_Arduino/tree/master/libraries/Bluefruit52Lib/examples

Advertising: Beacon

This example shows how you can use the BLEBeacon helper class and advertising API to configure your

Bluefruit nRF52 board as a 'Beacon'.

Complete Code

/***

 This is an example for our nRF52 based Bluefruit LE modules

 Pick one up today in the adafruit shop!

 Adafruit invests time and resources providing this open source code,

 please support Adafruit and open-source hardware by purchasing

 products from Adafruit!

 MIT license, check LICENSE for more information

 All text above, and the splash screen below must be included in

 any redistribution

***/

#include <bluefruit.h>

// Beacon uses the Manufacturer Specific Data field in the advertising

// packet, which means you must provide a valid Manufacturer ID. Update

// the field below to an appropriate value. For a list of valid IDs see:

// https://www.bluetooth.com/specifications/assigned-numbers/company-identifiers

// 0x004C is Apple

// 0x0822 is Adafruit

// 0x0059 is Nordic

#define MANUFACTURER_ID 0x0059

// "nRF Connect" app can be used to detect beacon

uint8_t beaconUuid[16] =

{

 0x01, 0x12, 0x23, 0x34, 0x45, 0x56, 0x67, 0x78,

 0x89, 0x9a, 0xab, 0xbc, 0xcd, 0xde, 0xef, 0xf0

};

// A valid Beacon packet consists of the following information:

// UUID, Major, Minor, RSSI @ 1M

BLEBeacon beacon(beaconUuid, 0x0102, 0x0304, -54);

void setup()

{

 Serial.begin(115200);

 // Uncomment to blocking wait for Serial connection

 // while (!Serial) delay(10);

 Serial.println("Bluefruit52 Beacon Example");

 Serial.println("--------------------------\n");

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 180 of 210

 Bluefruit.begin();

 // off Blue LED for lowest power consumption

 Bluefruit.autoConnLed(false);

 Bluefruit.setTxPower(0); // Check bluefruit.h for supported values

 // Manufacturer ID is required for Manufacturer Specific Data

 beacon.setManufacturer(MANUFACTURER_ID);

 // Setup the advertising packet

 startAdv();

 Serial.println("Broadcasting beacon, open your beacon app to test");

 // Suspend Loop() to save power, since we didn't have any code there

 suspendLoop();

}

void startAdv(void)

{

 // Advertising packet

 // Set the beacon payload using the BLEBeacon class populated

 // earlier in this example

 Bluefruit.Advertising.setBeacon(beacon);

 // Secondary Scan Response packet (optional)

 // Since there is no room for 'Name' in Advertising packet

 Bluefruit.ScanResponse.addName();

 /* Start Advertising

 * - Enable auto advertising if disconnected

 * - Timeout for fast mode is 30 seconds

 * - Start(timeout) with timeout = 0 will advertise forever (until connected)

 *

 * Apple Beacon specs

 * - Type: Non connectable, undirected

 * - Fixed interval: 100 ms -> fast = slow = 100 ms

 */

 //Bluefruit.Advertising.setType(BLE_GAP_ADV_TYPE_ADV_NONCONN_IND);

 Bluefruit.Advertising.restartOnDisconnect(true);

 Bluefruit.Advertising.setInterval(160, 160); // in unit of 0.625 ms

 Bluefruit.Advertising.setFastTimeout(30); // number of seconds in fast mode

 Bluefruit.Advertising.start(0); // 0 = Don't stop advertising after n seconds

}

void loop()

{

 // loop is already suspended, CPU will not run loop() at all

}

Output

You can use the nRF Beacons application from Nordic Semiconductors to test this sketch:

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 181 of 210

nRF Beacons for iOS (https://adafru.it/vaC)

nRF Beacons for Android (https://adafru.it/vaD)

Make sure that you set the UUID, Major and Minor values to match the sketch above, and then run the

sketch at the same time as the nRF Beacons application.

With the default setup you should see a Mona Lisa icon when the beacon is detected. If you don't see this,

double check the UUID, Major and Minor values to be sure they match exactly.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 182 of 210

https://itunes.apple.com/app/nrf-beacons/id879614768?mt=8
https://play.google.com/store/apps/details?id=no.nordicsemi.android.nrfbeacon

BLE UART: Controller

This examples shows you you can use the BLEUart helper class and the Bluefruit LE Connect applications

to send based keypad and sensor data to your nRF52.

Setup

In order to use this sketch, you will need to open Bluefruit LE Connect on your mobile device using our

free iOS (https://adafru.it/f4H), Android (https://adafru.it/f4G) or OS X (https://adafru.it/o9F) applications.

Load the Controller example sketch (https://adafru.it/vaN) in the Arduino IDE

Compile the sketch and flash it to your nRF52 based Feather

Once you are done uploading, open the Serial Monitor (Tools > Serial Monitor)

Open the Bluefruit LE Connect application on your mobile device

Connect to the appropriate target (probably ' Bluefruit52')

Once connected switch to the Controller application inside the app

Enable an appropriate control surface. The Color Picker control surface is shown below, for example

(screen shot taken from the iOS application):

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 183 of 210

https://itunes.apple.com/app/adafruit-bluefruit-le-connect/id830125974?mt=8
https://play.google.com/store/apps/details?id=com.adafruit.bluefruit.le.connect
https://itunes.apple.com/us/app/adafruit-bluefruit-le-connect/id1082414600?mt=12
https://github.com/adafruit/Adafruit_nRF52_Arduino/tree/master/libraries/Bluefruit52Lib/examples/Peripheral/controller

As you change the color (or as other data becomes available) you should receive the data on the nRF52,

and see it in the Serial Monitor output:

Complete Code

/***

 This is an example for our nRF52 based Bluefruit LE modules

 Pick one up today in the adafruit shop!

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 184 of 210

 Adafruit invests time and resources providing this open source code,

 please support Adafruit and open-source hardware by purchasing

 products from Adafruit!

 MIT license, check LICENSE for more information

 All text above, and the splash screen below must be included in

 any redistribution

***/

#include <bluefruit.h>

// OTA DFU service

BLEDfu bledfu;

// Uart over BLE service

BLEUart bleuart;

// Function prototypes for packetparser.cpp

uint8_t readPacket (BLEUart *ble_uart, uint16_t timeout);

float parsefloat (uint8_t *buffer);

void printHex (const uint8_t * data, const uint32_t numBytes);

// Packet buffer

extern uint8_t packetbuffer[];

void setup(void)

{

 Serial.begin(115200);

 while (!Serial) delay(10); // for nrf52840 with native usb

 Serial.println(F("Adafruit Bluefruit52 Controller App Example"));

 Serial.println(F("---"));

 Bluefruit.begin();

 Bluefruit.setTxPower(4); // Check bluefruit.h for supported values

 // To be consistent OTA DFU should be added first if it exists

 bledfu.begin();

 // Configure and start the BLE Uart service

 bleuart.begin();

 // Set up and start advertising

 startAdv();

 Serial.println(F("Please use Adafruit Bluefruit LE app to connect in Controller mode"));

 Serial.println(F("Then activate/use the sensors, color picker, game controller, etc!"));

 Serial.println();

}

void startAdv(void)

{

 // Advertising packet

 Bluefruit.Advertising.addFlags(BLE_GAP_ADV_FLAGS_LE_ONLY_GENERAL_DISC_MODE);

 Bluefruit.Advertising.addTxPower();

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 185 of 210

 // Include the BLE UART (AKA 'NUS') 128-bit UUID

 Bluefruit.Advertising.addService(bleuart);

 // Secondary Scan Response packet (optional)

 // Since there is no room for 'Name' in Advertising packet

 Bluefruit.ScanResponse.addName();

 /* Start Advertising

 * - Enable auto advertising if disconnected

 * - Interval: fast mode = 20 ms, slow mode = 152.5 ms

 * - Timeout for fast mode is 30 seconds

 * - Start(timeout) with timeout = 0 will advertise forever (until connected)

 *

 * For recommended advertising interval

 * https://developer.apple.com/library/content/qa/qa1931/_index.html

 */

 Bluefruit.Advertising.restartOnDisconnect(true);

 Bluefruit.Advertising.setInterval(32, 244); // in unit of 0.625 ms

 Bluefruit.Advertising.setFastTimeout(30); // number of seconds in fast mode

 Bluefruit.Advertising.start(0); // 0 = Don't stop advertising after n seconds

}

/**/

/*!

 @brief Constantly poll for new command or response data

*/

/**/

void loop(void)

{

 // Wait for new data to arrive

 uint8_t len = readPacket(&bleuart, 500);

 if (len == 0) return;

 // Got a packet!

 // printHex(packetbuffer, len);

 // Color

 if (packetbuffer[1] == 'C') {

 uint8_t red = packetbuffer[2];

 uint8_t green = packetbuffer[3];

 uint8_t blue = packetbuffer[4];

 Serial.print ("RGB #");

 if (red < 0x10) Serial.print("0");

 Serial.print(red, HEX);

 if (green < 0x10) Serial.print("0");

 Serial.print(green, HEX);

 if (blue < 0x10) Serial.print("0");

 Serial.println(blue, HEX);

 }

 // Buttons

 if (packetbuffer[1] == 'B') {

 uint8_t buttnum = packetbuffer[2] - '0';

 boolean pressed = packetbuffer[3] - '0';

 Serial.print ("Button "); Serial.print(buttnum);

 if (pressed) {

 Serial.println(" pressed");

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 186 of 210

 Serial.println(" pressed");

 } else {

 Serial.println(" released");

 }

 }

 // GPS Location

 if (packetbuffer[1] == 'L') {

 float lat, lon, alt;

 lat = parsefloat(packetbuffer+2);

 lon = parsefloat(packetbuffer+6);

 alt = parsefloat(packetbuffer+10);

 Serial.print("GPS Location\t");

 Serial.print("Lat: "); Serial.print(lat, 4); // 4 digits of precision!

 Serial.print('\t');

 Serial.print("Lon: "); Serial.print(lon, 4); // 4 digits of precision!

 Serial.print('\t');

 Serial.print(alt, 4); Serial.println(" meters");

 }

 // Accelerometer

 if (packetbuffer[1] == 'A') {

 float x, y, z;

 x = parsefloat(packetbuffer+2);

 y = parsefloat(packetbuffer+6);

 z = parsefloat(packetbuffer+10);

 Serial.print("Accel\t");

 Serial.print(x); Serial.print('\t');

 Serial.print(y); Serial.print('\t');

 Serial.print(z); Serial.println();

 }

 // Magnetometer

 if (packetbuffer[1] == 'M') {

 float x, y, z;

 x = parsefloat(packetbuffer+2);

 y = parsefloat(packetbuffer+6);

 z = parsefloat(packetbuffer+10);

 Serial.print("Mag\t");

 Serial.print(x); Serial.print('\t');

 Serial.print(y); Serial.print('\t');

 Serial.print(z); Serial.println();

 }

 // Gyroscope

 if (packetbuffer[1] == 'G') {

 float x, y, z;

 x = parsefloat(packetbuffer+2);

 y = parsefloat(packetbuffer+6);

 z = parsefloat(packetbuffer+10);

 Serial.print("Gyro\t");

 Serial.print(x); Serial.print('\t');

 Serial.print(y); Serial.print('\t');

 Serial.print(z); Serial.println();

 }

 // Quaternions

 if (packetbuffer[1] == 'Q') {

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 187 of 210

 if (packetbuffer[1] == 'Q') {

 float x, y, z, w;

 x = parsefloat(packetbuffer+2);

 y = parsefloat(packetbuffer+6);

 z = parsefloat(packetbuffer+10);

 w = parsefloat(packetbuffer+14);

 Serial.print("Quat\t");

 Serial.print(x); Serial.print('\t');

 Serial.print(y); Serial.print('\t');

 Serial.print(z); Serial.print('\t');

 Serial.print(w); Serial.println();

 }

}

You will also need the following helper class in a file called packetParser.cpp:

#include <string.h>

#include <Arduino.h>

#include <bluefruit.h>

#define PACKET_ACC_LEN (15)

#define PACKET_GYRO_LEN (15)

#define PACKET_MAG_LEN (15)

#define PACKET_QUAT_LEN (19)

#define PACKET_BUTTON_LEN (5)

#define PACKET_COLOR_LEN (6)

#define PACKET_LOCATION_LEN (15)

// READ_BUFSIZE Size of the read buffer for incoming packets

#define READ_BUFSIZE (20)

/* Buffer to hold incoming characters */

uint8_t packetbuffer[READ_BUFSIZE+1];

/**/

/*!

 @brief Casts the four bytes at the specified address to a float

*/

/**/

float parsefloat(uint8_t *buffer)

{

 float f;

 memcpy(&f, buffer, 4);

 return f;

}

/**/

/*!

 @brief Prints a hexadecimal value in plain characters

 @param data Pointer to the byte data

 @param numBytes Data length in bytes

*/

/**/

void printHex(const uint8_t * data, const uint32_t numBytes)

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 188 of 210

void printHex(const uint8_t * data, const uint32_t numBytes)

{

 uint32_t szPos;

 for (szPos=0; szPos < numBytes; szPos++)

 {

 Serial.print(F("0x"));

 // Append leading 0 for small values

 if (data[szPos] <= 0xF)

 {

 Serial.print(F("0"));

 Serial.print(data[szPos] & 0xf, HEX);

 }

 else

 {

 Serial.print(data[szPos] & 0xff, HEX);

 }

 // Add a trailing space if appropriate

 if ((numBytes > 1) && (szPos != numBytes - 1))

 {

 Serial.print(F(" "));

 }

 }

 Serial.println();

}

/**/

/*!

 @brief Waits for incoming data and parses it

*/

/**/

uint8_t readPacket(BLEUart *ble_uart, uint16_t timeout)

{

 uint16_t origtimeout = timeout, replyidx = 0;

 memset(packetbuffer, 0, READ_BUFSIZE);

 while (timeout--) {

 if (replyidx >= 20) break;

 if ((packetbuffer[1] == 'A') && (replyidx == PACKET_ACC_LEN))

 break;

 if ((packetbuffer[1] == 'G') && (replyidx == PACKET_GYRO_LEN))

 break;

 if ((packetbuffer[1] == 'M') && (replyidx == PACKET_MAG_LEN))

 break;

 if ((packetbuffer[1] == 'Q') && (replyidx == PACKET_QUAT_LEN))

 break;

 if ((packetbuffer[1] == 'B') && (replyidx == PACKET_BUTTON_LEN))

 break;

 if ((packetbuffer[1] == 'C') && (replyidx == PACKET_COLOR_LEN))

 break;

 if ((packetbuffer[1] == 'L') && (replyidx == PACKET_LOCATION_LEN))

 break;

 while (ble_uart->available()) {

 char c = ble_uart->read();

 if (c == '!') {

 replyidx = 0;

 }

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 189 of 210

 }

 packetbuffer[replyidx] = c;

 replyidx++;

 timeout = origtimeout;

 }

 if (timeout == 0) break;

 delay(1);

 }

 packetbuffer[replyidx] = 0; // null term

 if (!replyidx) // no data or timeout

 return 0;

 if (packetbuffer[0] != '!') // doesn't start with '!' packet beginning

 return 0;

 // check checksum!

 uint8_t xsum = 0;

 uint8_t checksum = packetbuffer[replyidx-1];

 for (uint8_t i=0; i<replyidx-1; i++) {

 xsum += packetbuffer[i];

 }

 xsum = ~xsum;

 // Throw an error message if the checksum's don't match

 if (xsum != checksum)

 {

 Serial.print("Checksum mismatch in packet : ");

 printHex(packetbuffer, replyidx+1);

 return 0;

 }

 // checksum passed!

 return replyidx;

}

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 190 of 210

Custom: HRM

The BLEService and BLECharacteristic classes can be used to implement any custom or officially adopted

BLE service of characteristic using a set of basic properties and callback handlers.

The example below shows how to use these classes to implement the Heart Rate

Monitor (https://adafru.it/vaO) service, as defined by the Bluetooth SIG.

HRM Service Definition

UUID: 0x180D (https://adafru.it/vaO)

Only the first characteristic is mandatory, but we will also implement the optional Body Sensor Location

characteristic. Heart Rate Control Point won't be used in this example to keep things simple.

Implementing the HRM Service and Characteristics

The core service and the first two characteristics can be implemented with the following code:

First, define the BLEService and BLECharacteristic variables that will be used in your project:

/* HRM Service Definitions

 * Heart Rate Monitor Service: 0x180D

 * Heart Rate Measurement Char: 0x2A37

 * Body Sensor Location Char: 0x2A38

 */

BLEService hrms = BLEService(UUID16_SVC_HEART_RATE);

BLECharacteristic hrmc = BLECharacteristic(UUID16_CHR_HEART_RATE_MEASUREMENT);

BLECharacteristic bslc = BLECharacteristic(UUID16_CHR_BODY_SENSOR_LOCATION);

Then you need to 'populate' those variables with appropriate values. For simplicity sake, you can define a

custom function for your service where all of the code is placed, and then just call this function once in the

'setup' function:

void setupHRM(void)

{

 // Configure the Heart Rate Monitor service

 // See: https://www.bluetooth.com/specifications/gatt/viewer?

attributeXmlFile=org.bluetooth.service.heart_rate.xml

Characteristic Name

Heart Rate Measurement

Body Sensor Location

Heart Rate Control Point

UUID

0x2A37

0x2A38

0x2A39

Requirement

Mandatory

Optional

Conditional

Properties

Notify

Read

Write

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 191 of 210

https://www.bluetooth.com/specifications/gatt/viewer?attributeXmlFile=org.bluetooth.service.heart_rate.xml
https://www.bluetooth.com/specifications/gatt/viewer?attributeXmlFile=org.bluetooth.service.heart_rate.xml
https://www.bluetooth.com/specifications/gatt/viewer?attributeXmlFile=org.bluetooth.characteristic.heart_rate_measurement.xml
https://www.bluetooth.com/specifications/gatt/viewer?attributeXmlFile=org.bluetooth.characteristic.body_sensor_location.xml
https://www.bluetooth.com/specifications/gatt/viewer?attributeXmlFile=org.bluetooth.characteristic.heart_rate_control_point.xml

attributeXmlFile=org.bluetooth.service.heart_rate.xml

 // Supported Characteristics:

 // Name UUID Requirement Properties

 // ---------------------------- ------ ----------- ----------

 // Heart Rate Measurement 0x2A37 Mandatory Notify

 // Body Sensor Location 0x2A38 Optional Read

 // Heart Rate Control Point 0x2A39 Conditional Write <-- Not used here

 hrms.begin();

 // Note: You must call .begin() on the BLEService before calling .begin() on

 // any characteristic(s) within that service definition.. Calling .begin() on

 // a BLECharacteristic will cause it to be added to the last BLEService that

 // was 'begin()'ed!

 // Configure the Heart Rate Measurement characteristic

 // See: https://www.bluetooth.com/specifications/gatt/viewer?

attributeXmlFile=org.bluetooth.characteristic.heart_rate_measurement.xml

 // Permission = Notify

 // Min Len = 1

 // Max Len = 8

 // B0 = UINT8 - Flag (MANDATORY)

 // b5:7 = Reserved

 // b4 = RR-Internal (0 = Not present, 1 = Present)

 // b3 = Energy expended status (0 = Not present, 1 = Present)

 // b1:2 = Sensor contact status (0+1 = Not supported, 2 = Supported but contact not

detected, 3 = Supported and detected)

 // b0 = Value format (0 = UINT8, 1 = UINT16)

 // B1 = UINT8 - 8-bit heart rate measurement value in BPM

 // B2:3 = UINT16 - 16-bit heart rate measurement value in BPM

 // B4:5 = UINT16 - Energy expended in joules

 // B6:7 = UINT16 - RR Internal (1/1024 second resolution)

 hrmc.setProperties(CHR_PROPS_NOTIFY);

 hrmc.setPermission(SECMODE_OPEN, SECMODE_NO_ACCESS);

 hrmc.setFixedLen(2);

 hrmc.setCccdWriteCallback(cccd_callback); // Optionally capture CCCD updates

 hrmc.begin();

 uint8_t hrmdata[2] = { 0b00000110, 0x40 }; // Set the characteristic to use 8-bit values, with

the sensor connected and detected

 hrmc.notify(hrmdata, 2); // Use .notify instead of .write!

 // Configure the Body Sensor Location characteristic

 // See: https://www.bluetooth.com/specifications/gatt/viewer?

attributeXmlFile=org.bluetooth.characteristic.body_sensor_location.xml

 // Permission = Read

 // Min Len = 1

 // Max Len = 1

 // B0 = UINT8 - Body Sensor Location

 // 0 = Other

 // 1 = Chest

 // 2 = Wrist

 // 3 = Finger

 // 4 = Hand

 // 5 = Ear Lobe

 // 6 = Foot

 // 7:255 = Reserved

 bslc.setProperties(CHR_PROPS_READ);

 bslc.setPermission(SECMODE_OPEN, SECMODE_NO_ACCESS);

 bslc.setFixedLen(1);

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 192 of 210

 bslc.setFixedLen(1);

 bslc.begin();

 bslc.write8(2); // Set the characteristic to 'Wrist' (2)

}

Service + Characteristic Setup Code Analysis

1. The first thing to do is to call .begin() on the BLEService (hrms above). Since the UUID is set in the object

declaration at the top of the sketch, there is normally nothing else to do with the BLEService instance.

2. Next, you can configure the Heart Rate Measurement characteristic (hrmc above). The values that you

set for this will depend on the characteristic definition, but for convenience sake we've documented the

key information in the comments in the code above.

' hrmc.setProperties(CHR_PROPS_NOTIFY); ' - This sets the PROPERTIES value for the characteristic,

which determines how the characteristic can be accessed. In this case, the Bluetooth SIG has defined

the characteristic as Notify, which means that the peripheral will receive a request ('notification') from

the Central when the Central wants to receive data using this characteristic.

` hrmc.setPermission(SECMODE_OPEN, SECMODE_NO_ACCESS); ` - This sets the security for the

characteristic, and should normally be set to the values used in this example.

` hrmc.setFixedLen(2); ` - This tells the Bluetooth stack how many bytes the characteristic contains

(normally a value between 1 and 20). In this case, we will use a fixed size of two bytes, so we

call .setFixedLen. If the characteristic has a variable length, you would need to set the max size via

.setMaxLen.

' hrmc.setCccdWriteCallback(cccd_callback); ' - This optional code sets the callback that will be fired

when the CCCD record is updated by the central. This is relevant because the characteristic is setup

with the NOTIFY property. When the Central sets to 'Notify' bit, it will write to the CCCD record, and

you can capture this write even in the CCCD callback and turn the sensor on, for example, allowing

you to save power by only turning the sensor on (and back off) when it is or isn't actually being used.

For the implementation of the CCCD callback handler, see the full sample code at the bottom of this

page.

' hrmc.begin(); ' Once all of the properties have been set, you must call .begin() which will add the

characteristic definition to the last BLEService that was '.begin()ed'.

3. Optionally set an initial value for the characteristic(s), such as the following code that populates 'hrmc'

with a correct values, indicating that we are providing 8-bit heart rate monitor values, that the Body Sensor

Location characteristic is present, and setting the first heart rate value to 0x04:

You MUST call .begin() on the BLEService before adding any BLECharacteristics. Any

BLECharacteristic will automatically be added to the last BLEService that was `begin()'ed!

Note that we use .notify() in the example above instead of .write(), since this characteristic is setup

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 193 of 210

// Set the characteristic to use 8-bit values, with the sensor connected and detected

uint8_t hrmdata[2] = { 0b00000110, 0x40 };

// Use .notify instead of .write!

hrmc.notify(hrmdata, 2);

The CCCD callback handler has the following signature:

void cccd_callback(uint16_t conn_hdl, BLECharacteristic* chr, uint16_t cccd_value)

{

 // Display the raw request packet

 Serial.print("CCCD Updated: ");

 //Serial.printBuffer(request->data, request->len);

 Serial.print(cccd_value);

 Serial.println("");

 // Check the characteristic this CCCD update is associated with in case

 // this handler is used for multiple CCCD records.

 if (chr->uuid == htmc.uuid) {

 if (chr->indicateEnabled(conn_hdl)) {

 Serial.println("Temperature Measurement 'Indicate' enabled");

 } else {

 Serial.println("Temperature Measurement 'Indicate' disabled");

 }

 }

}

4. Repeat the same procedure for any other BLECharacteristics in your service.

Full Sample Code

The full sample code for this example can be seen below:

/***

 This is an example for our nRF52 based Bluefruit LE modules

 Pick one up today in the adafruit shop!

 Adafruit invests time and resources providing this open source code,

 please support Adafruit and open-source hardware by purchasing

 products from Adafruit!

 MIT license, check LICENSE for more information

 All text above, and the splash screen below must be included in

 any redistribution

***/

with the NOTIFY property which needs to be handled in a slightly different manner than other

characteristics.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 194 of 210

#include <bluefruit.h>

/* HRM Service Definitions

 * Heart Rate Monitor Service: 0x180D

 * Heart Rate Measurement Char: 0x2A37

 * Body Sensor Location Char: 0x2A38

 */

BLEService hrms = BLEService(UUID16_SVC_HEART_RATE);

BLECharacteristic hrmc = BLECharacteristic(UUID16_CHR_HEART_RATE_MEASUREMENT);

BLECharacteristic bslc = BLECharacteristic(UUID16_CHR_BODY_SENSOR_LOCATION);

BLEDis bledis; // DIS (Device Information Service) helper class instance

BLEBas blebas; // BAS (Battery Service) helper class instance

uint8_t bps = 0;

void setup()

{

 Serial.begin(115200);

 while (!Serial) delay(10); // for nrf52840 with native usb

 Serial.println("Bluefruit52 HRM Example");

 Serial.println("-----------------------\n");

 // Initialise the Bluefruit module

 Serial.println("Initialise the Bluefruit nRF52 module");

 Bluefruit.begin();

 // Set the connect/disconnect callback handlers

 Bluefruit.Periph.setConnectCallback(connect_callback);

 Bluefruit.Periph.setDisconnectCallback(disconnect_callback);

 // Configure and Start the Device Information Service

 Serial.println("Configuring the Device Information Service");

 bledis.setManufacturer("Adafruit Industries");

 bledis.setModel("Bluefruit Feather52");

 bledis.begin();

 // Start the BLE Battery Service and set it to 100%

 Serial.println("Configuring the Battery Service");

 blebas.begin();

 blebas.write(100);

 // Setup the Heart Rate Monitor service using

 // BLEService and BLECharacteristic classes

 Serial.println("Configuring the Heart Rate Monitor Service");

 setupHRM();

 // Setup the advertising packet(s)

 Serial.println("Setting up the advertising payload(s)");

 startAdv();

 Serial.println("Ready Player One!!!");

 Serial.println("\nAdvertising");

}

void startAdv(void)

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 195 of 210

{

 // Advertising packet

 Bluefruit.Advertising.addFlags(BLE_GAP_ADV_FLAGS_LE_ONLY_GENERAL_DISC_MODE);

 Bluefruit.Advertising.addTxPower();

 // Include HRM Service UUID

 Bluefruit.Advertising.addService(hrms);

 // Include Name

 Bluefruit.Advertising.addName();

 /* Start Advertising

 * - Enable auto advertising if disconnected

 * - Interval: fast mode = 20 ms, slow mode = 152.5 ms

 * - Timeout for fast mode is 30 seconds

 * - Start(timeout) with timeout = 0 will advertise forever (until connected)

 *

 * For recommended advertising interval

 * https://developer.apple.com/library/content/qa/qa1931/_index.html

 */

 Bluefruit.Advertising.restartOnDisconnect(true);

 Bluefruit.Advertising.setInterval(32, 244); // in unit of 0.625 ms

 Bluefruit.Advertising.setFastTimeout(30); // number of seconds in fast mode

 Bluefruit.Advertising.start(0); // 0 = Don't stop advertising after n seconds

}

void setupHRM(void)

{

 // Configure the Heart Rate Monitor service

 // See: https://www.bluetooth.com/specifications/gatt/viewer?

attributeXmlFile=org.bluetooth.service.heart_rate.xml

 // Supported Characteristics:

 // Name UUID Requirement Properties

 // ---------------------------- ------ ----------- ----------

 // Heart Rate Measurement 0x2A37 Mandatory Notify

 // Body Sensor Location 0x2A38 Optional Read

 // Heart Rate Control Point 0x2A39 Conditional Write <-- Not used here

 hrms.begin();

 // Note: You must call .begin() on the BLEService before calling .begin() on

 // any characteristic(s) within that service definition.. Calling .begin() on

 // a BLECharacteristic will cause it to be added to the last BLEService that

 // was 'begin()'ed!

 // Configure the Heart Rate Measurement characteristic

 // See: https://www.bluetooth.com/specifications/gatt/viewer?

attributeXmlFile=org.bluetooth.characteristic.heart_rate_measurement.xml

 // Properties = Notify

 // Min Len = 1

 // Max Len = 8

 // B0 = UINT8 - Flag (MANDATORY)

 // b5:7 = Reserved

 // b4 = RR-Internal (0 = Not present, 1 = Present)

 // b3 = Energy expended status (0 = Not present, 1 = Present)

 // b1:2 = Sensor contact status (0+1 = Not supported, 2 = Supported but contact not

detected, 3 = Supported and detected)

 // b0 = Value format (0 = UINT8, 1 = UINT16)

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 196 of 210

 // B1 = UINT8 - 8-bit heart rate measurement value in BPM

 // B2:3 = UINT16 - 16-bit heart rate measurement value in BPM

 // B4:5 = UINT16 - Energy expended in joules

 // B6:7 = UINT16 - RR Internal (1/1024 second resolution)

 hrmc.setProperties(CHR_PROPS_NOTIFY);

 hrmc.setPermission(SECMODE_OPEN, SECMODE_NO_ACCESS);

 hrmc.setFixedLen(2);

 hrmc.setCccdWriteCallback(cccd_callback); // Optionally capture CCCD updates

 hrmc.begin();

 uint8_t hrmdata[2] = { 0b00000110, 0x40 }; // Set the characteristic to use 8-bit values, with

the sensor connected and detected

 hrmc.write(hrmdata, 2);

 // Configure the Body Sensor Location characteristic

 // See: https://www.bluetooth.com/specifications/gatt/viewer?

attributeXmlFile=org.bluetooth.characteristic.body_sensor_location.xml

 // Properties = Read

 // Min Len = 1

 // Max Len = 1

 // B0 = UINT8 - Body Sensor Location

 // 0 = Other

 // 1 = Chest

 // 2 = Wrist

 // 3 = Finger

 // 4 = Hand

 // 5 = Ear Lobe

 // 6 = Foot

 // 7:255 = Reserved

 bslc.setProperties(CHR_PROPS_READ);

 bslc.setPermission(SECMODE_OPEN, SECMODE_NO_ACCESS);

 bslc.setFixedLen(1);

 bslc.begin();

 bslc.write8(2); // Set the characteristic to 'Wrist' (2)

}

void connect_callback(uint16_t conn_handle)

{

 // Get the reference to current connection

 BLEConnection* connection = Bluefruit.Connection(conn_handle);

 char central_name[32] = { 0 };

 connection->getPeerName(central_name, sizeof(central_name));

 Serial.print("Connected to ");

 Serial.println(central_name);

}

/**

 * Callback invoked when a connection is dropped

 * @param conn_handle connection where this event happens

 * @param reason is a BLE_HCI_STATUS_CODE which can be found in ble_hci.h

 */

void disconnect_callback(uint16_t conn_handle, uint8_t reason)

{

 (void) conn_handle;

 (void) reason;

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 197 of 210

 Serial.print("Disconnected, reason = 0x"); Serial.println(reason, HEX);

 Serial.println("Advertising!");

}

void cccd_callback(uint16_t conn_hdl, BLECharacteristic* chr, uint16_t cccd_value)

{

 // Display the raw request packet

 Serial.print("CCCD Updated: ");

 //Serial.printBuffer(request->data, request->len);

 Serial.print(cccd_value);

 Serial.println("");

 // Check the characteristic this CCCD update is associated with in case

 // this handler is used for multiple CCCD records.

 if (chr->uuid == hrmc.uuid) {

 if (chr->notifyEnabled(conn_hdl)) {

 Serial.println("Heart Rate Measurement 'Notify' enabled");

 } else {

 Serial.println("Heart Rate Measurement 'Notify' disabled");

 }

 }

}

void loop()

{

 digitalToggle(LED_RED);

 if (Bluefruit.connected()) {

 uint8_t hrmdata[2] = { 0b00000110, bps++ }; // Sensor connected, increment BPS

value

 // Note: We use .notify instead of .write!

 // If it is connected but CCCD is not enabled

 // The characteristic's value is still updated although notification is not sent

 if (hrmc.notify(hrmdata, sizeof(hrmdata))){

 Serial.print("Heart Rate Measurement updated to: "); Serial.println(bps);

 }else{

 Serial.println("ERROR: Notify not set in the CCCD or not connected!");

 }

 }

 // Only send update once per second

 delay(1000);

}

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 198 of 210

Bluefruit LE Connect

The Bluefruit LE Connect app provides iOS devices with a variety of tools to communicate with Bluefruit

LE devices, such as the Circuit Playground Bluefruit! These tools cover basic communication and info

reporting as well as more project specific uses such as remote button control and a NeoPixel color picker.

The iOS app is a free download from Apple's App Store (https://adafru.it/ddu). As of this writing, it requires

iOS 11.3 or later and works on the iPhone, iPad, and iPod Touch.

Install Bluefruit LE
The first step is to install the app on your device.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 199 of 210

https://itunes.apple.com/us/app/adafruit-bluefruit-le-connect/id830125974?mt=8
https://learn.adafruit.com//assets/82470

Enable Bluetooth
If Bluetooth is disabled on your device, enable it by going

to Setting > Bluetooth on your iOS device and then

turning it on.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 200 of 210

https://learn.adafruit.com//assets/82469
https://learn.adafruit.com//assets/82471

Enable Location Services
If you plan to use the app to send location/GPS data to

Bluefruit LE, enable Location Services. Enable it on iOS

using Settings->Privacy->Location Services.

Scan for Devices

Launch the app now -- it will automatically begin to scan the airwaves for Bluetooth LE devices. These are

presented in a list at the bottom of the page.

Notice, you can use the Must have UART Service filter to prevent BLE devices from showing up that can't

work with the app.

To refresh the list and start a new scan, simply swipe down on the current list.

Each device's signal strength is displayed in the left side of its row.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 201 of 210

https://learn.adafruit.com//assets/82472
https://learn.adafruit.com//assets/82473
https://learn.adafruit.com//assets/82474

If you tap on the device entry (not on Connect), you'll see more detail about a particular device:

Connect

Tap the Connect button on the UART capable device you wish to use. The app will connect to the Circuit

Playground Bluefruit! Now, you'll be presented with the Device name and signal strength, and a number of

different Modules you can use.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 202 of 210

Controller Module

Click on the Controller module. You'll see a number of different sensor data streaming options. Enabling

these will allow you to send data from your phone, such as the Accelerometer data or Location data,

directly to your Circuit Playground Bluefruit!

The two modules on this page that can send data to the Circuit Playground Bluefruit are the Control Pad

and Color Picker.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 203 of 210

Color Picker

Click on the Color Picker. Now, you can dial in the hue, saturation, and value of a color using the color

wheel and value slider.

Follow this page (https://adafru.it/GcO) for setting up the CPB with the color picker code.

Press the Send selected color button and your color values will be sent to the Circuit Playground Bluefruit

to adjust its NeoPixels!

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 204 of 210

https://learn.adafruit.com/adafruit-circuit-playground-bluefruit/playground-color-picker

The app provides many other features with the additional modules. Have a look at the Bluefruit LE

Connect for iOS and Android standalone guide (https://adafru.it/GcP) for an explanation of each feature.

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 205 of 210

https://learn.adafruit.com/bluefruit-le-connect/features

Downloads

Files:

Datasheet for Nordic nRF52840 (https://adafru.it/FKw)

Nordic InfoCenter for further documentation (https://adafru.it/FKx)

EagleCAD files for Circuit Playground Bluefruit on GitHub (https://adafru.it/FKy)

3D Models on GitHub (https://adafru.it/G4D)

Fritzing object in the Adafruit Fritzing Library (https://adafru.it/FKz)

To download the original Circuit Playground Bluefruit sketch that shipped on your CPB, click the button

below.

https://adafru.it/Sa5

Schematic for Circuit Playground Bluefruit

https://adafru.it/Sa5

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 206 of 210

https://infocenter.nordicsemi.com/pdf/nRF52840_PS_v1.1.pdf
https://infocenter.nordicsemi.com/index.jsp
https://github.com/adafruit/Adafruit-Circuit-Playground-Bluefruit-PCB
https://github.com/adafruit/Adafruit_CAD_Parts/tree/master/4333%20Circuit%20Playground%20Bluefruit
https://github.com/adafruit/Fritzing-Library/blob/master/parts/Adafruit%20Circuit%20Playground%20Bluefruit.fzpz
https://cdn-learn.adafruit.com/assets/assets/000/101/989/original/CPBLUEFRUIT.UF2?1620059549

Fab print of Circuit Playground Bluefruit

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 207 of 210

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 208 of 210

© Adafruit Industries https://learn.adafruit.com/adafruit-circuit-playground-bluefruit Page 209 of 210

© Adafruit Industries Last Updated: 2021-08-19 03:36:03 PM EDT Page 210 of 210

	Guide Contents
	Overview
	Guided Tour
	Power and Data
	Micro B USB connector
	JST Battery Input

	Alligator/Croc Clip Pads
	Microchips
	LEDs
	Green ON LED
	Red #13 LED
	10 x Color NeoPixel LED

	Speaker
	Sensors
	Light Sensor
	Temperature Sensor
	Microphone Audio Sensor
	Motion Sensor
	Capacitive Touch

	Switches & Buttons
	Pinouts
	Power Pads
	Input/Output Pads
	Common to all pads

	Each Pin!
	Internally Used Pins!
	Debug Interface
	What is CircuitPython?
	CircuitPython is based on Python
	Why would I use CircuitPython?

	CircuitPython on Circuit Playground Bluefruit
	Install or Update CircuitPython
	Circuit Playground Bluefruit CircuitPython Libraries
	Installing CircuitPython Libraries on Circuit Playground Bluefruit
	Getting Started with BLE and CircuitPython
	Guides
	Installing Mu Editor
	Download and Install Mu
	Using Mu
	Creating and Editing Code
	Creating Code
	Editing Code
	Your code changes are run as soon as the file is done saving.

	1. Use an editor that writes out the file completely when you save it.
	2. Eject or Sync the Drive After Writing
	Oh No I Did Something Wrong and Now The CIRCUITPY Drive Doesn't Show Up!!!

	Back to Editing Code...
	Exploring Your First CircuitPython Program
	Imports & Libraries
	Setting Up The LED
	Loop-de-loops
	What Happens When My Code Finishes Running?
	What if I don't have the loop?

	More Changes
	Naming Your Program File
	Connecting to the Serial Console
	Are you using Mu?
	Setting Permissions on Linux

	Using Something Else?
	Interacting with the Serial Console
	The REPL
	Returning to the serial console
	CircuitPython Libraries
	Installing the CircuitPython Library Bundle
	Example Files

	Copying Libraries to Your Board
	Example: ImportError Due to Missing Library
	Library Install on Non-Express Boards
	Updating CircuitPython Libraries/Examples

	Frequently Asked Questions
	I have to continue using an older version of CircuitPython; where can I find compatible libraries?
	Is ESP8266 or ESP32 supported in CircuitPython? Why not?
	How do I connect to the Internet with CircuitPython?
	Is there asyncio support in CircuitPython?
	My RGB NeoPixel/DotStar LED is blinking funny colors - what does it mean?
	What is a MemoryError?
	What do I do when I encounter a MemoryError?
	Can the order of my import statements affect memory?
	How can I create my own .mpy files?
	How do I check how much memory I have free?
	Does CircuitPython support interrupts?
	Does Feather M0 support WINC1500?
	Can AVRs such as ATmega328 or ATmega2560 run CircuitPython?
	Commonly Used Acronyms

	CircuitPython Expectations
	Always Run the Latest Version of CircuitPython and Libraries
	I have to continue using CircuitPython 3.x or 2.x, where can I find compatible libraries?
	Switching Between CircuitPython and Arduino
	The Difference Between Express And Non-Express Boards
	Non-Express Boards: Gemma, Trinket, and QT Py
	Small Disk Space
	No Audio or NVM

	Differences Between CircuitPython and MicroPython
	Differences Between CircuitPython and Python
	Python Libraries
	Integers in CircuitPython
	Floating Point Numbers and Digits of Precision for Floats in CircuitPython
	Differences between MicroPython and Python

	Troubleshooting
	Always Run the Latest Version of CircuitPython and Libraries
	I have to continue using CircuitPython 5.x, 4.x, 3.x or 2.x, where can I find compatible libraries?
	CPLAYBOOT, TRINKETBOOT, FEATHERBOOT, or GEMMABOOT Drive Not Present
	You may have a different board.
	MakeCode
	MacOS
	Windows 10
	Windows 7 or 8.1

	Windows Explorer Locks Up When Accessing boardnameBOOT Drive
	Copying UF2 to boardnameBOOT Drive Hangs at 0% Copied
	CIRCUITPY Drive Does Not Appear
	Windows 7 and 8.1 Problems
	Serial Console in Mu Not Displaying Anything
	CircuitPython RGB Status Light
	ValueError: Incompatible .mpy file.
	CIRCUITPY Drive Issues
	Easiest Way: Use storage.erase_filesystem()
	Old Way: For the Circuit Playground Express, Feather M0 Express, and Metro M0 Express:
	Old Way: For Non-Express Boards with a UF2 bootloader (Gemma M0, Trinket M0):
	Old Way: For non-Express Boards without a UF2 bootloader (Feather M0 Basic Proto, Feather Adalogger, Arduino Zero):

	Running Out of File Space on Non-Express Boards
	Delete something!
	Use tabs
	MacOS loves to add extra files.
	Prevent & Remove MacOS Hidden Files
	Copy Files on MacOS Without Creating Hidden Files
	Other MacOS Space-Saving Tips

	Device locked up or boot looping
	Uninstalling CircuitPython
	Backup Your Code

	Moving Circuit Playground Express to MakeCode
	Moving to Arduino
	Welcome to the Community!
	Adafruit Discord
	Adafruit Forums
	Adafruit Github
	ReadTheDocs

	CircuitPython Made Easy
	CircuitPython Playground
	CircuitPython Pins and Modules
	CircuitPython Pins
	import board
	I2C, SPI, and UART
	What Are All the Available Names?
	Microcontroller Pin Names

	CircuitPython Built-In Modules
	CircuitPython Built-Ins
	Thing That Are Built In and Work
	Flow Control
	Math
	Tuples, Lists, Arrays, and Dictionaries
	Classes, Objects and Functions
	Lambdas
	Random Numbers

	CircuitPython Digital In & Out
	Going Beyond the Lesson!
	Experiment 1
	Experiment 2

	CircuitPython Analog In
	Creating an Analog Input
	GetVoltage Helper
	Main Loop

	CircuitPython Servo
	Servo Wiring
	Standard Servo Code
	Continuous Servo Code

	CircuitPython Audio Out
	Basic Tones
	Playing Audio Files
	CircuitPython Cap Touch
	Creating an capacitive touch input
	Main Loop
	Capacitive Touch and the Audio Pin on Circuit Playground Bluefruit

	CircuitPython NeoPixel
	CircuitPython DotStar
	Wire It Up
	The Code
	Create the LED
	DotStar Helpers
	Main Loop
	Is it SPI?
	Read the Docs

	CircuitPython UART Serial
	The Code
	Wire It Up
	Where's my UART?
	Trinket M0: Create UART before I2C

	CircuitPython I2C
	Wire It Up
	Find Your Sensor
	I2C Sensor Data
	Where's my I2C?

	CircuitPython HID Keyboard
	CircuitPython CPU Temp
	CircuitPython Storage
	Logging the Temperature

	Playground Temperature
	Playground Light Sensor
	Playground Drum Machine
	Playground Sound Meter
	Playground Color Picker
	The Code
	Playground Bluetooth Plotter
	The Code
	Arduino Support Setup
	1. BSP Installation
	Recommended: Installing the BSP via the Board Manager

	2. LINUX ONLY: adafruit-nrfutil Tool Installation
	3. Update the bootloader (nRF52832 ONLY)
	Advanced Option: Manually Install the BSP via 'git'
	Adafruit nRF52 BSP via git (for core development and PRs only)

	Arduino BLE Examples
	Example Source Code
	Documented Examples
	Advertising: Beacon
	Complete Code
	Output
	BLE UART: Controller
	Setup
	Complete Code
	Custom: HRM
	HRM Service Definition
	Implementing the HRM Service and Characteristics
	Service + Characteristic Setup Code Analysis

	Full Sample Code
	Bluefruit LE Connect
	Install Bluefruit LE
	Enable Bluetooth
	Enable Location Services
	Scan for Devices
	Connect
	Controller Module
	Color Picker

	Downloads
	Files:

	Schematic for Circuit Playground Bluefruit
	Fab print of Circuit Playground Bluefruit

